Skip to main content


Log in

Geographic distribution and aggressiveness of Harpophora maydis in the Iberian peninsula, and thermal detection of maize late wilt

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript


Late wilt (causal agent Harpophora maydis), with initial symptoms appearing around flowering, has become frequent in maize fields of the Iberian Peninsula. The geographical distribution of the pathogen in the main maize - growing areas in the South of Portugal and Spain was determined by prospecting 59 fields from 2009 to 2013. Among all the isolates of H. maydis identified, 14 isolates were molecularly confirmed by ITS amplification, and their pathogenic traits (i.e. aggressiveness) were analyzed by inoculation of the maize susceptible cultivar PR32W86 grown in pots under shade-house conditions for the whole growing season. One of the isolates was highly aggressive, causing intense symptoms as well as significant reductions in weight of both aboveground parts and roots. Moderately aggressive isolates caused significantly high disease values but not all of them were related to reductions in plant weight. The infection by H. maydis was monitored by measurements of canopy temperature and crop water stress index of maize. Canopy temperature was assessed in potted control plants and in plants inoculated with the most aggressive isolate in two experiments conducted outdoors in 2012 and 2013. Both indices responded to the presence of fungal infection in both years, which was detected up to 17 days before development of symptoms in the plants. This study shows the wide distribution of H. maydis in the Iberian Peninsula and highlights the importance of genetic resistance for controlling the pathogen in southern Europe. In addition, the thermal detection of the infection prior to symptom development might lead to useful applications of non-destructive pre-symptomatic disease diagnosis in controlling late wilt disease in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  • Abd El-Rahim, M. F., Fahmy, G. M., & Fahmy, Z. M. (1998). Alterations in transpiration and stem vascular tissues of two maize cultivars under conditions of water stress and late wilt disease. Plant Pathology, 47, 216–223.

    Article  Google Scholar 

  • Allen, R. G., Pereira, J. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Bergstrom, G., Leslie, J., Huber, D., Lipps, P., Warren, H., Esker, P., Grau, C., Botratynski, T., Bulluck, R., Floyd, J., Bennett, R., Bonde, M., Dunkle, L., Smith, K., Zeller, K., Cardwell, K., Daberkow, S., Bell, D., & Chandgoyal, T. (2008). Recovery plan for late wilt of corn caused by Harpophora maydis syn. Cephalosporium maydis. Washington, DC: National Plant Disease Recovery System.

    Google Scholar 

  • Bowden, R. L., & Rouse, D. I. (1991). Effects of Verticillium dahliae on gas exchange of potato. Phytopathology, 81, 293–301.

    Article  Google Scholar 

  • Calderón, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231–245.

    Article  Google Scholar 

  • Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: John Wiley & Sons, Inc..

    Google Scholar 

  • Degani, O., & Cernica, G. (2014). Diagnosis and control of Harpophora maydis, the cause of late wilt in maize. Advances in Microbiology, 4, 94–105.

  • Dimond, A. E. (1970). Biophysics and biochemistry of the vascular wilt syndrome. Annual Review of Phytopathology, 8, 301–322.

    Article  Google Scholar 

  • Drori, R., Sharon, A., Goldberg, D., Rabinovitz, O., Levy, M., & Degani, O. (2013). Molecular diagnosis for Harpophora maydis, the cause of maize late wilt in Israel. Phytopathologia Mediterranea, 52, 16–29.

  • Eaton, F. M., & Belden, G. O. (1929). Leaf temperatures of cotton and their relation to transpiration, varietal differences, and yields. U.S.D.A Technical Bulletin, 91, 1–39.

  • Ehrler, W. L. (1973). Cotton leaf temperatures as related to soil-water depletion and meteorological factors. Agronomy Journal, 65, 404–409.

    Article  Google Scholar 

  • El-Shafey, H. A., & Claflin, L. E. (1999). Late wilt. In D. G. White (Ed.), Compendium of corn diseases (pp. 43–44). St. Paul: APS Press.

    Google Scholar 

  • El-Shafey, H. A., El-Shorbagy, F. A., Khalil, I. I., & El-Assiuty, E. M. (1988). Additional sources of resistance to the late-wilt disease of maize caused by Cephalosporium maydis. Agricultural Research Review, 66, 221–230.

    Google Scholar 

  • Eyal, Z., & Blum, A. (1989). Canopy temperature as a correlative measure for assessing host response to Septoria tritici blotch of wheat. Plant Disease, 73, 468–471.

    Article  Google Scholar 

  • Gams, W. (2000). Phialophora and some similar morphologically little-differentiated anamorphs of divergent ascomycetes. Studies in Mycology, 45, 187–199.

  • García-Carneros, A. B., Girón, I., & Molinero-Ruiz, L. (2012). Aggressiveness of Cephalosporium maydis causing late wilt of maize in Spain. Communications in Agricultural and Applied Biological Sciences, 77, 173–179.

    PubMed  Google Scholar 

  • Idso, S. B., Jackson, R. D., Pinter, P. J., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45–55.

    Article  Google Scholar 

  • Idso, S. B. (1982). Non-water-stressed baselines - a key to measuring and interpreting plant water-stress. Agricultural Meteorology, 27, 59–70.

    Article  Google Scholar 

  • Jackson, R. D., Reginato, R. J., & Idso, S. B. (1977). Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resources Research, 13, 651–656.

    Article  Google Scholar 

  • Jones, H. G. (1999). Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and Forest Meteorology, 95, 139–149.

    Article  Google Scholar 

  • Lindenthal, M., Steiner, U., Dehne, H. W., & Oerke, E. C. (2005). Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology, 95, 233–240.

    Article  PubMed  Google Scholar 

  • Lorenzini, G., Guidi, L., Nali, C., Ciompi, S., & Soldatini, G. F. (1997). Photosynthetic response of tomato plants to vascular wilt diseases. Plant Science, 124, 143–152.

    Article  CAS  Google Scholar 

  • Molinero-Ruiz, M. L., Melero-Vara, J. M., & Mateos, A. (2010). Cephalosporium maydis, the cause of late wilt in maize, a pathogen new to Portugal and Spain. Plant Disease, 94, 379.

    Article  Google Scholar 

  • Oerke, E. C., Steiner, U., Dehne, H. W., & Lindenthal, M. (2006). Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. Journal of Experimental Botany, 57, 2121–2132.

    Article  CAS  PubMed  Google Scholar 

  • Parke, J. L., Oh, E., Voelker, S., Hansen, E. M., Buckles, G., & Lachenbruch, B. (2007). Phytophthora ramorum colonizes tanoak xylem and is associated with reduced stem water transport. Phytopathology, 97, 1558–1567.

    Article  CAS  PubMed  Google Scholar 

  • Passioura, J. B. (2006). The perils of pot experiments. Functional Plant Biology, 33, 1075–1079.

    Article  Google Scholar 

  • Payak, M. M., Lal, S., Lilaramani, J., & Renfro, B. L. (1970). Cephalosporium maydis a new threat to maize in India. Indian Phytopathology, 23, 562–569.

    Google Scholar 

  • Pecsi, S., & Nemeth, L. (1998). Appearance of Cephalosporium maydis samra, sabet and hingorani in Hungary. Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent, 63, 873–877.

    Google Scholar 

  • Sabet, K. A., Zaher, A. M., Samra, A. S., & Mansour, I. M. (1970). Pathogenic behavior of Cephalosporium maydis and C. acremonium. Annals of Applied Biology, 66, 257–263.

    Article  Google Scholar 

  • Saleh, A. A., Zeller, K. A., Ismael, A. M., Fahmy, Z. M., El-Assiuty, E. M., & Leslie, J. F. (2003). Amplified fragment length polymorphism diversity in Cephalosporium maydis from Egypt. Phytopathology, 93, 853–859.

    Article  CAS  PubMed  Google Scholar 

  • Saleh, A. A., & Leslie, J. F. (2004). Cephalosporium maydis is a distinct species in the gaeumannomyces-harpophora species complex. Mycologia, 96, 1294–1305.

    Article  CAS  PubMed  Google Scholar 

  • Samra, A. S., Sabet, K. A., & Hingorani, M. K. (1963). Late wilt disease of maize caused by Cephalosporium maydis. Phytopathology, 53, 402–406.

    Google Scholar 

  • Singh, S. D., & Siradhana, B. S. (1987). Influence of some environmental conditions on the development of late wilt of maize induced by Cephalosporium maydis. Indian Journal of Mycology and Plant Pathology, 17, 1–5.

    CAS  Google Scholar 

  • Soliman, F. H. S., & Sadek, S. E. (1998). Combining ability of new maize inbred lines and its utilization in the Egyptian hybrid program. Bulletin of the Faculty of Agriculture of the University of Cairo Egypt, 50, 1–20.

    Google Scholar 

  • Testi, L., Goldhamer, D. A., Iniesta, F., & Salinas, M. (2008). Crop water stress index is a sensitive water stress indicator in pistachio trees. Irrigation Science, 26, 395–405.

    Article  Google Scholar 

  • Waggoner, P. E., & Dimond, A. E. (1954). Reduction in water flow by mycelium in vessels. American Journal of Botany, 41, 637–640.

    Article  Google Scholar 

  • Wang, M., Ling, N., Dong, X., Zhu, Y., Shen, Q., & Guo, S. (2012). Thermographic visualization of leaf response in cucumber plants infected with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum. Plant Physiology and Biochemistry, 61, 153–161.

    Article  CAS  PubMed  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). New York: Academic Press.

    Google Scholar 

  • Zeller, K. A., Jurgenson, J. E., El-Assiuty, Z. M., & Leslie, J. F. (2000). Isozyme and amplified fragment length polymorphisms from Cephalosporium maydis in Egypt. Phytoparasitica, 28, 121–130.

    Article  CAS  Google Scholar 

  • Zeller, K. A., Ismael, A. M., El-Assiuty, E. M., Fahmy, Z. M., & Bekheet, F. M. (2002). Relative competitiveness and virulence of four clonal lineages of Cephalosporium maydis from Egypt toward greenhouse-grown maize. Plant Disease, 86, 373–378.

    Article  Google Scholar 

Download references


Research partially supported by the Spanish National Research Council (CSIC) (PIE200940I120). The authors are grateful to Monsanto Agricultura España SL, Pioneer Hi-Bred Agro Servicios Spain SL and Semillas Fitó for providing some of the samples of diseased maize plants.

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. Molinero-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Bustos, C.M., Testi, L., García-Carneros, A.B. et al. Geographic distribution and aggressiveness of Harpophora maydis in the Iberian peninsula, and thermal detection of maize late wilt. Eur J Plant Pathol 144, 383–397 (2016).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: