Skip to main content

The effects of grapevine trunk diseases (GTDs) on vine physiology

Abstract

Esca disease as well as Botryosphaeria and Eutypa dieback cause considerable economic problems for vineyards worldwide, and currently, no efficient treatment is available to control these diseases. For these three grapevine trunk diseases (GTDs), the main physiological effects reported concern carbohydrate metabolism and defence responses in the different organs of vine. In the trunk, a depletion of starch reserves in woody tissues is associated with fungal colonization; in the leaves, where pathogens are not present, the carbohydrate metabolism is also affected as revealed by a decline of the photosynthetic rate. A consequence of these disturbances is a lower pool of carbon reserves that might contribute to a decrease of plant development and vigour during the subsequent year. Other metabolic activities such as lipid and amino acid metabolism are down regulated. The perturbation of these primary metabolisms is often associated with the induction of defence responses. The development of biochemical barriers resulting from the accumulation of both tyloses and gummosis is observed during the infection of the wood causing blockage of the xylem vessels and thus limiting the fungal invasion. Their progression in the wood is also inhibited by the formation of polyphenol-rich reaction zones and by the accumulation of pathogenesis-related proteins, and the oxidative burst and the production of reactive oxygen species. Additionally, detoxification processes of the vine are involved; this reaction could be linked to the production of extracellular compounds by GTD agents some of which are phytotoxic. As a consequence, the sensory quality of berries and probably the wine made from these berries decrease. This review presents an overview of the physiological modifications described in vines affected by GTDs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abou-Mansour, E., Débieux, J.-L., Ramírez-Suero, M., Bénard-Gellon, M., Magnin-Robert, M., Spagnolo, A., et al. (2015). Phytotoxic metabolites from Neofusicoccum parvum, a pathogen of Botryosphaeria dieback of grapevine. Phytochemistry. doi:10.1016/j.phytochem.2015.01.012.

    PubMed  Google Scholar 

  2. Agrelli, D., Amalfitano, C., Conte, P., & Mugnai, L. (2009). Chemical and spectroscopic characteristics of the wood of Vitis vinifera Cv. Sangiovese affected by esca disease. Journal of Agricultural and Food Chemistry, 57(24), 11469–11475. doi:10.1021/jf903561x.

    CAS  Article  PubMed  Google Scholar 

  3. Almeida, F. (2007). Technical note 2 – “grapevine wood diseases—eutypa dieback and esca”. ADVID Technical Notes, 1–14.

  4. Al-Whaibi, M. H. (2011). Plant heat-shock proteins: a mini review. Journal of King Saud University - Science, 23(2), 139–150. doi:10.1016/j.jksus.2010.06.022.

    Article  Google Scholar 

  5. Amalfitano, C., Evidente, A., Surico, G., Tegli, S., Bertelli, E., & Mugnai, L. (2000). Phenols and stilbene polyphenols in the wood of esca-diseased grapevines. Phytopathologia Mediterranea, 39, 178–183.

    CAS  Google Scholar 

  6. Amalfitano, C., Agrelli, D., Arrigo, A., Mugnai, L., Surico, G., & Evidente, A. (2011). Stilbene polyphenols in the brown red wood of Vitis vinifera cv. Sangiovese affected by “esca proper”. Phytopathologia Mediterranea, 50, S224–S235.

    Google Scholar 

  7. Andolfi, A., Mugnai, L., Luque, J., Surico, G., Cimmino, A., & Evidente, A. (2011). Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins, 3(12), 1569–1605. doi:10.3390/toxins3121569.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Arimura, G., Ozawa, R., Nishioka, T., Boland, W., Koch, T., Kuhnemann, F., et al. (2002). Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant Journal, 29(1), 87–98. doi:10.1046/j.1365-313x.2002.01198.x.

    CAS  Article  PubMed  Google Scholar 

  9. Baker, N. R., Nogués, S., & Allen, D. J. (1997). Photosynthesis and photoinhibition. In P. J. Lumsden (Ed.), Plants and UV-B: responses to environmental change (pp. 95–111). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  10. Baskarathevan, J., Jaspers, M. V., Jones, E. E., & Ridgway, H. J. (2012). Incidence and distribution of botryosphaeriaceous species in New Zealand vineyards. European Journal of Plant Pathology, 132(4), 549–560. doi:10.1007/s10658-011-9900-5.

    Article  Google Scholar 

  11. Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany, 58(15–16), 4019–4026. doi:10.1093/jxb/erm298.

    CAS  Article  PubMed  Google Scholar 

  12. Bertsch, C., Ramirez-Suero, M., Magnin-Robert, M., Larignon, P., Chong, J., Abou-Mansour, E., et al. (2013). Grapevine trunk diseases: complex and still poorly understood. Plant Pathology, 62(2), 243–265. doi:10.1111/j.1365-3059.2012.02674.x.

    Article  Google Scholar 

  13. Bolton, M. D. (2009). Primary metabolism and plant defence-fuel for the fire. Molecular Plant-Microbe Interactions, 22(5), 487–497. doi:10.1094/mpmi-22-5-0487.

    CAS  Article  PubMed  Google Scholar 

  14. Bruez, E., Grosman Jacques, L. P., Bruno, D., Bertsch, C., Fontaine, F., Ugaglia, A., Teissedre, P.-L., Da Costa Jean-Pierre, G.-D. L., & Patrice, R. (2013). Overview of grapevine trunk diseases in France in the 2000s. Phytopathologia Mediterranea, 52(2), 262–275.

    Google Scholar 

  15. Bruez, E., Vallance, J., Gerbore, J., Lecomte, P., Da Costa, J.-P., Guerin-Dubrana, L., et al. (2014). Analyses of the temporal dynamics of fungal communities colonizing the healthy wood tissues of esca leaf-symptomatic and asymptomatic vines. Plos One, 9(5), doi:10.1371/journal.pone.0095928.

  16. Calzarano, F., Cichelli, A., & Odoardi, M. (2001). Preliminary evaluation of variations in composition induced by esca on cv. Trebbiano d’Abruzzo grapes and wines. Phytopathologia Mediterranea, 40, 443–448.

    Google Scholar 

  17. Calzarano, F., Seghetti, L., Del Carlo, M., & Cichelli, A. (2004). Effect of esca on the quality of berries, musts and wines. Phytopathologia Mediterranea, 43(1), 125–135.

    CAS  Google Scholar 

  18. Calzarano, F., Amalfitano, C., Seghetti, L., & D’Agostino, V. (2007). Foliar treatment of esca-proper affected vines with nutrients and bioactivators. Phytopathologia Mediterranea, 44, 207–217.

    Google Scholar 

  19. Calzarano, F., D’Agostino, V., & Del Carlo, M. (2008). Trans-resveratrol extraction from grapevine: application to berries and leaves from vines affected by esca proper. Analytical letters 41, 1-13.

  20. Calzarano, F., Di Marco, S., D’Agostino, V., Schiff, S., & Mugni, L. (2014). Grapevine leaf stripe disease symtpoms (esca complex) are reduced by a nutrients and seaweed mixture. Phytopathologia Mediterranea, 53(3), 543–558.

    Google Scholar 

  21. Camps, C., Kappel, C., Lecomte, P., Leon, C., Gomes, E., Coutos-Thevenot, P., et al. (2010). A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata. Journal of Experimental Botany, 61(6), 1719–1737. doi:10.1093/jxb/erq040.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Chiarappa, L. (1959). Wood decay of the grapevine and its relationship with black measles disease. Phytopathology, 49(8), 510–519.

    Google Scholar 

  23. Christen, D. (2006). Towards an integrative management of eutypa dieback and esca disease of grapevine. Thesis of the Swiss Federal Institute of Technology, Zurich, Switzerland.

  24. Christen, D., Schonmann, S., Jermini, M., Strasser, R. J., & Defago, G. (2007). Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environmental and Experimental Botany, 60(3), 504–514. doi:10.1016/j.envexpbot.2007.02.003.

    CAS  Article  Google Scholar 

  25. Colditz, F., Niehaus, K., & Krajinski, F. (2007). Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches. Planta, 226(1), 57–71. doi:10.1007/s00425-006-0466-y.

    CAS  Article  PubMed  Google Scholar 

  26. Constabel, C. P., Bergey, D. R., & Ryan, C. A. (1995). Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defence signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 92(2), 407–411. doi:10.1073/pnas.92.2.407.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Deytieux, C., Geny, L., Lapaillerie, D., Claverol, S., Bonneu, M., & Doneche, B. (2007). Proteome analysis of grape skins during ripening. Journal of Experimental Botany, 58(7), 1851–1862. doi:10.1093/jxb/erm049.

    CAS  Article  PubMed  Google Scholar 

  28. Di Marco, S., & Osti, F. (2009). Effect of biostimulant sprays on Phaeomoniella chlamysdospora and esca proper infected vines under greenhouse and field conditions. Phytopathologia Mediterranea, 48, 1150–1157.

    Google Scholar 

  29. Di Marco, S., Osti, F., Calzarano, F., Roberti, R., Veronesi, A., & Amalfitnao, C. (2011). Effects of grapevine applications of fosetyl-aluminium formulations for downy mildew control on “esca” and associated fungi. Phytopathologia Mediterranea, 50S, S285–S299.

    Google Scholar 

  30. Diaz, G. A., Auger, J., Besoain, X., Bordeu, E., & Latorre, B. A. (2013). Prevalence and pathogenicity of fungi associated with grapevine trunk diseases in Chilean vineyards. Ciencia E Investigacion Agraria, 40(2), 327–339.

    Article  Google Scholar 

  31. Dixon, R. A., Achnine, L., Kota, P., Liu, C. J., Reddy, M. S. S., & Wang, L. J. (2002). The phenylpropanoid pathway and plant defence - a genomics perspective. Molecular Plant Pathology, 3(5), 371–390. doi:10.1046/j.1364-3703.2002.00131.x.

    CAS  Article  PubMed  Google Scholar 

  32. Edwards, J., Marchi, G., & Pascoe, I. (2001). Young esca in Australia. Phytopathologia Mediterranea, 40, S303–S310.

    Google Scholar 

  33. Edwards, J., Salib, S., Thomson, F., & Pascoe, I. G. (2007a). The impact of Phaemoniella chlamydospora infection on the grapevine’s physiological response to water stress part 1: Zinfandel. Phytopathologia Mediterranea, 46, 26–37.

    Google Scholar 

  34. Edwards, J., Salib, S., Thomson, F., & Pascoe, I. G. (2007b). The impact of Phaeomoniella chlamydospora infection on the grapevine’s physiological response to water stress part 2: Cabernet Sauvignon and Chardonnay. Phytopathologia Mediterranea, 46, 38–49.

    Google Scholar 

  35. Felgueiras, M. L., Chicau, G., Moutinho-Pereira, J. M., & Dias, A. C. P. (2007). Effects of esca disease on leaf gas exchanges of cv. Alvarinho in a vineyard of the Portuguese Vinho Verde Region. Phytopathologia Mediterranea, 46(1), 119–119.

    Google Scholar 

  36. Feliciano, A., Eskalen, A., & Gubler, W. (2004). Differential susceptibility of three grapevine cultivars to Phaeoacremonium aleophilum and Phaeomoniella chlamydospora in California. Phytopathologia Mediterranea, 43, 66–69.

    Google Scholar 

  37. Fleurat-Lessard, P., Bourbouloux, A., Thibault, F., Menard, E., Bere, E., Valtaud, C., et al. (2013). Differential occurrence of suberized sheaths in canes of grapevines suffering from black dead arm, esca or Eutypa dieback. Trees-Structure and Function, 27(4), 1087–1100. doi:10.1007/s00468-013-0859-z.

    Article  Google Scholar 

  38. Frova, C. (2003). The plant glutathione transferase gene family: genomic structure, functions, expression and evolution. Physiologia Plantarum, 119(4), 469–479. doi:10.1046/j.1399-3054.2003.00183.x.

    CAS  Article  Google Scholar 

  39. Graniti, A., Surico, G., & Mugnai, L. (2000). Esca of grapevine: a disease complex or a complex diseases? Phytopathologia Mediterranea, 39, 16–20.

    Google Scholar 

  40. Grant, O. M., Tronina, L., Jones, H. G., & Chaves, M. M. (2007). Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany, 58(4), 815–825. doi:10.1093/jxb/erl153.

    CAS  Article  PubMed  Google Scholar 

  41. Grosman, J. D. B. (2012). Maladie du bois de la vigne – Synthèse des dispositifs d’observation au vignoble, de l’observatoire 2003–2008 au résau d’épidemiosurveillance actuel. Phytoma, 651(2), 31–34.

    Google Scholar 

  42. Gubler, W., Rolshausen, P., Trouillas, F., Urbez, J., Voegel, T., Leavitt, G., et al. (2005). Grapevine trunk diseases in California. Pratical Winery and Vineyard Magazine, 6–25.

  43. Gurley, W. B. (2000). HSP101: a key component for the acquisition of thermotolerance in plants. The Plant Cell, 12(4), 457–460.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Hofstetter, V., Buyck, B., Croll, D., Viret, O., Couloux, A., & Gindro, K. (2012). What if esca disease of grapevine were not a fungal disease? Fungal Diversity, 54(1), 51–67. doi:10.1007/s13225-012-0171-z.

    Article  Google Scholar 

  45. Hussain, S. S., Ali, M., Ahmad, M., & Siddique, K. H. M. (2011). Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29(3), 300–311. doi:10.1016/j.biotechadv.2011.01.003.

    CAS  Article  PubMed  Google Scholar 

  46. Kortekamp, A. (2006). Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiology and Biochemistry, 44(1), 58–67. doi:10.1016/j.plaphy.2006.01.008.

    CAS  Article  PubMed  Google Scholar 

  47. Koussa, T., Dubos, B., & Cherrad, M. (2002). Les teneurs en acides gras, en eau et en acide abscissique des feuilles de vigne (Vitis vinifera L. var. Cabernet Sauvignon) infectées par Eutypa lata. Vitis, 43, 143–146.

    Google Scholar 

  48. Lambert, C., Bisson, J., Waffo-Teguo, P., Papastamoulis, Y., Richard, T., Corio-Costet, M. F., et al. (2012). Phenolics and their antifungal role in grapevine wood decay: focus on the Botryosphaeriaceae family. Journal of Agricultural and Food Chemistry, 60(48), 11859–11868. doi:10.1021/jf303290g.

    CAS  Article  PubMed  Google Scholar 

  49. Lambert, C. K. K. I., Lucas, S., Télef-Micoleau, N., Mérillon, J.-M., & Cluzet, S. (2013). A faster and stronger defence response: one of the key elements in grapevine explaining its lower susceptibility to esca? Phytopathology, 103(10), 1028–1034.

    CAS  Article  PubMed  Google Scholar 

  50. Larignon, P., & Dubos, B. (1997). Fungi associated with esca disease in grapevine. European Journal of Plant Pathology, 103(2), 147–157. doi:10.1023/a:1008638409410.

    Article  Google Scholar 

  51. Larignon, P. F. R., Cere, L., & Dubos, B. (2001). Observation on black dead arm in French vineyards. Phytopathologia Mediterranea, 40S(3), 336–342.

    Google Scholar 

  52. Larignon, P. F. F., Farine, S., Clément, C., & Bertsch, C. (2009). Esca et black dead arm: deux acteurs majeurs des maladies du bois chez la vigne. Comptes Rendus de l’Académie des Sciences III-Vie, 333(9), 765–783.

    Google Scholar 

  53. Leavitt, G. (1991). Diseases. In: Grape pest management, 2nd Ed., Univ. of California IPM Manual. Flaherty, D., et al. (eds), Chapter 22, 162–172.

  54. Lebon, G., Wojnarowiez, G., Holzapfel, B., Fontaine, F., Vaillant-Gaveau, N., & Clement, C. (2008). Sugars and flowering in the grapevine (Vitis vinifera L.) (vol 59, pg 2565, 2008). Journal of Experimental Botany, 59(15), doi:10.1093/jxb/ern325.

  55. Lecomte, P., Darrieutort, G., Liminana, J. M., Comont, G., Muruamendiaraz, A., Legorburu, F. J., et al. (2012). New insights into esca of grapevine: the development of foliar symptoms and their association with xylem discoloration. Plant Disease, 96(7), 924–934. doi:10.1094/pdis-09-11-0776-re.

    Article  Google Scholar 

  56. Letousey, P., Baillieul, F., Perrot, G., Rabenoelina, F., Boulay, M., Vaillant-Gaveau, N., et al. (2010). Early events prior to visual symptoms in the apoplectic form of grapevine esca disease. Phytopathology, 100(5), 424–431. doi:10.1094/phyto-100-5-0424.

    CAS  Article  PubMed  Google Scholar 

  57. Lima, M. R. M., Felgueiras, M. L., Graca, G., Rodrigues, J. E. A., Barros, A., Gil, A. M., et al. (2010). NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. Journal of Experimental Botany, 61(14), 4033–4042. doi:10.1093/jxb/erq214.

    CAS  Article  PubMed  Google Scholar 

  58. Lima, M. R. M., Ferreres, F., & Dias, A. C. P. (2012). Response of Vitis vinifera cell cultures to Phaeomoniella chlamydospora: changes in phenolic production, oxidative state and expression of defence-related genes. European Journal of Plant Pathology, 132(1), 133–146. doi:10.1007/s10658-011-9857-4.

    CAS  Article  Google Scholar 

  59. Lorrain, B., Ky, I., Pasquier, G., Jourdes, M., Dubrana, L. G., Geny, L., et al. (2012). Effect of Esca disease on the phenolic and sensory attributes of Cabernet Sauvignon grapes, musts and wines. Australian Journal of Grape and Wine Research, 18(1), 64–72. doi:10.1111/j.1755-0238.2011.00172.x.

    CAS  Article  Google Scholar 

  60. Luque, J., Elena, G., Garcia-Figueres, F., Reyes, J., Barrios, G., & Legorburu, F. J. (2014). Natural infections of pruning wounds by fungal trunk pathogens in mature grapevines in Catalonia (Northeast Spain). Australian Journal of Grape and Wine Research, 20(1), 134–143. doi:10.1111/ajgw.12046.

    Article  Google Scholar 

  61. Magnin-Robert, M., Letousey, P., Spagnolo, A., Rabenoelina, F., Jacquens, L., Mercier, L., Clément, C., & Fontaine, F. (2011). Leaf strip of esca induces alteration of photosynthesis and defence reactions in presymptomatic leaves. Functional Plant Biology, 38(11), 856–866.

    CAS  Article  Google Scholar 

  62. Magnin-Robert, M., Spagnolo, A., Alayi, T. D., Cilindre, C., Mercier, L., Schaeffer-Reiss, C., Van Dorsselaer, A., Clément, C., & Fontaine, F. (2014). Proteomic insights into changes in wood of Vitis vinifera L. in response to esca proper and apoplexy. Phytopathologia Mediterranea, 53, 173–192.

    Google Scholar 

  63. Maimbo, M., Ohnishi, K., Hikichi, Y., Yoshioka, H., & Kiba, A. (2007). Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defence response against Ralstonia solanacearum(1 W). Plant Physiology, 145(4), 1588–1599. doi:10.1104/pp. 107.105353.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Marchi, G., Peduto, F., Mugnai, L., Di Marco, S., Calzarano, F., & Surico, G. (2006). Some observations on the relationship of manifest and hidden esca to rainfall. Phytopathologia Mediterranea, 45, 117–S126.

    Google Scholar 

  65. Martin, M., & Cobos, R. (2007). Identification of fungi associated with grapevine decline in Castilla y Léon (Spain). Phytopathologia Mediterranea, 46, 18–25.

    Google Scholar 

  66. Möller, W. J., Kasimatis, A. N., & Kissler, J. J. (1974). A dying arm disease of grape in California. Plant Disease Reporter, 58, 869–871.

    Google Scholar 

  67. Möller, M., Alchantis, V., Cohen, Y., Meron, M., Tsipris, J., Naor, A., et al. (2007). Use of thermal and visible imagery for estimating crop water status of irrigation grapevine. Journal of Experimental Botany, 58, 827–838.

    Article  PubMed  Google Scholar 

  68. Monteiro, S., Barakat, M., Picarra-Pereira, M. A., Teixeira, A. R., & Ferreira, R. B. (2003). Osmotin and thaumatin from grape: a putative general defence mechanism against pathogenic fungi. Phytopathology, 93(12), 1505–1512. doi:10.1094/phyto.2003.93.12.1505.

    CAS  Article  PubMed  Google Scholar 

  69. Morales, A., Latorre, B. A., Piontelli, E., & Besoain, X. (2012). Botryosphaeriaceae species affecting table grape vineyards in Chile and cultivar susceptibility. Ciencia E Investigacion Agraria, 39(3), 445–458.

    Article  Google Scholar 

  70. Mugnai, L., Graniti, A., & Surico, G. (1999). Esca (Black measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Disease, 83(5), 404–418. doi:10.1094/pdis.1999.83.5.404.

    Article  Google Scholar 

  71. Murolo, S., & Romanazzi, G. (2014). Effects of grapevine cultivar, rootstock and clone on esca disease. Australasian Plant Pathology, 43(2), 215–221. doi:10.1007/s13313-014-0276-9.

    CAS  Article  Google Scholar 

  72. Pasquier, G., Lapaillerie, D., Vilain, S., Dupuy, J.-W., Lomenech, A.-M., Claverol, S., et al. (2013). Impact of foliar symptoms of “Esca proper” on proteins related to defence and oxidative stress of grape skins during ripening. Proteomics, 13(1), 108–118. doi:10.1002/pmic.201200194.

    CAS  Article  PubMed  Google Scholar 

  73. Petit, A. N., Vaillant, N., Boulay, M., Clement, C., & Fontaine, F. (2006). Alteration of photosynthesis in grapevines affected by esca. Phytopathology, 96(10), 1060–1066. doi:10.1094/phyto-96-1060.

    CAS  Article  PubMed  Google Scholar 

  74. Petit, A. N., Baillieul, F., Vaillant-Gaveau, N., Jacquens, L., Conreux, A., Jeandet, P., et al. (2009). Low responsiveness of grapevine flowers and berries at fruit set to UV-C irradiation. Journal of Experimental Botany, 60(4), 1155–1162. doi:10.1093/jxb/ern361.

    CAS  Article  PubMed  Google Scholar 

  75. Philippe, I., Fallot, J., Petitprez, M., & Dargent, R. (1992). Effets de l’eutypiose sur les feuilles de Vitis vinifera cv. Cabernet Sauvignon. Etude cytologique. Vitis, 31, 45–53.

    Google Scholar 

  76. Pouzoulet, J., Pivovaroff, A. L., Santiago, L. S., & Rolshausen, P. E. (2014). Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Frontiers in Plant Science, 5, doi: 10.3389/fpls.2014.00253.

  77. Rifai, L. A., Koussa, T., Geny, L., Fassouane, A., Broquedis, M., & Dubos, B. (2005). Evolution des teneurs en polyamines libres et conjuguées dans les feuilles de vigne (Vitis vinifera ‘Cabernet Sauvignon’) saine et atteinte d’eutypiose. Canadian Journal of Botany, 83, 194–201.

    CAS  Article  Google Scholar 

  78. Rojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defence. Frontiers in Plant Science, 5, doi:10.3389/fpls.2014.00017.

  79. Roje, S. (2006). S-Adenosyl-L-methionine: Beyond the universal methyl group donor. Phytochemistry, 67(15), 1686–1698. doi:10.1016/j.phytochem.2006.04.019.

    CAS  Article  PubMed  Google Scholar 

  80. Santos, C., Fragoeiro, S., & Phillips, A. (2005). Physiological response of grapevine cultivars and a rootstock to infection with Phaeoacremonium and Phaeomoniella isolates: an in vitro approach using plants and calluses. Scientia Horticulturae, 103(2), 187–198. doi:10.1016/j.scienta.2004.04.023.

    CAS  Article  Google Scholar 

  81. Shigo, A. L. (1982). A codit view of tree cankers. Phytopathology, 72(2), 265–265.

    Google Scholar 

  82. Spagnolo, A., Magnin-Robert, M., Alayi, T. D., Cilindre, C., Mercier, L., Schaeffer-Reiss, C., et al. (2012). Physiological changes in green stems of Vitis vinifera L. cv. Chardonnay in response to esca proper and apoplexy revealed by proteomic and transcriptomic analyses. Journal of Proteome Research, 11(1), 461–475. doi:10.1021/pr200892g.

    CAS  Article  PubMed  Google Scholar 

  83. Spagnolo, A., Magnin-Robert, M., Alayi, T. D., Cilindre, C., Schaeffer-Reiss, C., Van Dorsselaer, A., Clément, C., Larignon, P., Suero-Ramirez, M., Chong, J., Bertsch, C., Abou-Mansour, E., & Fontaine, F. (2014a). Differential responses of three grapevine cultivars to Botryosphaeria dieback. Phytopathology. doi:10.1094/PHYTO-01-14-0007-R.

    PubMed  Google Scholar 

  84. Spagnolo, A., Larignon, P., Magnin-Robert, M., Hovasse, A., Cilindre, C., Van Dorsselaer, A., Clément, C., Schaeffer-Reiss, C., & Fontaine, F. (2014b). Flowering as the most highly sensitive period of grapevine (Vitis vinifera L. cv Mourvèdre) to the Botryosphaeria dieback agents Neofusicoccum parvum and Diplodia seriata infection. International Journal of Molecular Sciences, 15, 9644–9669. doi:10.3390/ijms15069644.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Surico, G. (2009). Towards a redefinition of the disease within the esca complex of grapevine. Phytopathologia Mediterranea, 48, 5–10.

    Google Scholar 

  86. Surico, G. M. L., & Marchi, G. (2006). Older and more recent observations on esca: a critical review. Phytopathologia Mediterranea, 45, S68–S86.

    Google Scholar 

  87. Surico, G., Bandinelli, R., Braccinni, P., Marco, S., Marchi, G., Mugnai, L., & Parrini, C. (2004). On the factors that may have influenced the esca epidemic in Tuscany in the eighties. Phytopathologia Mediterranea, 43, 136–143.

    Google Scholar 

  88. Surico, G., Mugnai, L., & Marchi, G. (2008). The esca disease complex. In A. Ciancio & K. Mukerji (Eds.), Integrated management of diseases caused by fungi, phytoplama and bacteria (pp. 119–136). Dordrecht: Springer.

    Chapter  Google Scholar 

  89. Thipyapong, P., Hunt, M. D., & Steffens, J. C. (1995). Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry, 40(3), 673–676. doi:10.1016/0031-9422(95)00359-f.

    CAS  Article  Google Scholar 

  90. Thipyapong, P., Stout, M. J., & Attajarusit, J. (2007). Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules, 12(8), 1569–1595. doi:10.3390/12081569.

    CAS  Article  PubMed  Google Scholar 

  91. Tsunezuka, H., Fujiwara, M., Kawasaki, T., & Shimamoto, K. (2005). Proteome analysis of programmed cell death and defence signaling using the rice lesion mimic mutant cdr2. Molecular Plant-Microbe Interactions, 18(1), 52–59. doi:10.1094/mpmi-18-0052.

    CAS  Article  PubMed  Google Scholar 

  92. Tuzun, S., & Somanchi, A. (2006). The possible role of PR proteins in multigenic and induced systemic resistance. In S. Tuzun & E. Bent (Eds.), Multigenic and induced systemic resistance in plants (pp. 112–142). New York: Springer.

    Chapter  Google Scholar 

  93. Úrbez-Torres, J. R. (2011). The status of Botryosphaeriaceae species infecting grapevines. Phytopathologia Mediterranea, 50, S5–S45.

    Google Scholar 

  94. Úrbez-Torres, J. R., Haag, P., Bowen, P., & O’Gorman, D. T. (2014). Grapevine trunk diseases in British Columbia: incidence and characterization of the fungal pathogens associated with esca and petri diseases of grapevine. Plant Disease, 98(4), 469–482. doi:10.1094/pdis-05-13-0523-re.

    Article  Google Scholar 

  95. Valtaud, C. F. C., Fleurat-Lessard, P., & Bourbouloux, A. (2009a). Systemic effects on leaf glutathione metabolism and defence protein expression caused by esca infection in grapevines. Function Plant Biology, 36(3), 260–279.

    CAS  Article  Google Scholar 

  96. Valtaud, C., Larignon, P., Roblin, G., & Fleurat-Lessard, P. (2009b). Developmental and ultrastructural features of Phaeomoniella chlamydospora and Phaeoacremonium aleophilum in relation to xylem degradation in esca disease of the grapevine. Journal of Plant Pathology, 91(1), 37–51.

    CAS  Google Scholar 

  97. Valtaud, C., Thibault, F., Larignon, P., Berstch, C., Fleurat-Lessard, P., & Bourbouloux, A. (2011). Systemic damage in leaf metabolism caused by esca infection in grapevines. Australian Journal of Grape and Wine Research, 17(1), 101–110. doi:10.1111/j.1755-0238.2010.00122.x.

    Article  Google Scholar 

  98. van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defence-related proteins in infected plants. In Annual Review of Phytopathology (Vol. 44, pp. 135–162, Annual Review of Phytopathology). Palo Alto: Annual Reviews.

  99. van Niekerk, J. M., Crous, P. W., Groenewald, J. Z., Fourie, P. H., & Halleen, F. (2004). DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines. Mycologia, 96(4), 781–798. doi:10.2307/3762112.

    Article  PubMed  Google Scholar 

  100. Waters, E. R., Lee, G. J., & Vierling, E. (1996). Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany, 47(296), 325–338. doi:10.1093/jxb/47.3.325.

    CAS  Article  Google Scholar 

  101. White, C. L. (2010). The characterization of the Basidiomycetes and other fungi asscoiated with esca of grapevines in South Africa. Thesis, Stelleboch University, South Africa.

  102. Yan, J. Y., Xie, Y., Zhang, W., Wang, Y., Liu, J. K., Hyde, K. D., et al. (2013). Species of Botryosphaeriaceae involved in grapevine dieback in China. Fungal Diversity, 61(1), 221–236. doi:10.1007/s13225-013-0251-8.

    Article  Google Scholar 

  103. Yang, L. T., Lin, H., Takahashi, Y., Chen, F., Walker, M. A., & Civerolo, E. L. (2011). Proteomic analysis of grapevine stem in response to Xylella fastidiosa inoculation. Physiological and Molecular Plant Pathology, 75(3), 90–99. doi:10.1016/j.pmpp.2010.11.002.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the CASDAR programme V1301 (Compte d’Affectation Spécial au Développement Agricole et Rural), the Interprofessionnal institute “Interloire”, FranceAgriMer, FEDER – COMPETE, through “Quadro de Referência Estratégico Nacional” - QREN, with the reference FCOMP-01-0202-FEDER-011498, and within the project FCOMP-01-0124-FEDER-008749, which is financed with funds from FEDER through the “Programa Operacional Factores de Competitividade” – COMPETE, FCT. We thank Richard Smart, a native speaker and a vine consultant, to revise and improve the English of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Florence Fontaine.

Additional information

This article is part of Topical Collection on Special Issue on Fungal Grapevine Diseases

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fontaine, F., Pinto, C., Vallet, J. et al. The effects of grapevine trunk diseases (GTDs) on vine physiology. Eur J Plant Pathol 144, 707–721 (2016). https://doi.org/10.1007/s10658-015-0770-0

Download citation

Keywords

  • Berries
  • Botryosphaeria dieback
  • Esca disease
  • Eutypa dieback
  • Green stem
  • Leaf
  • Trunk