European Journal of Plant Pathology

, Volume 144, Issue 1, pp 133–140 | Cite as

Phenolic profiles of two Melampyrum species differing in susceptibility to Cronartium rust

  • Juha Kaitera
  • Johanna Witzell


Cronartium flaccidum is an important pathogen in boreal forestry where it causes pine stem rust. The hemiparasite Melampyrum sylvaticum serves as a telial host for this heteroecious fungus while the congeneric M. pratense is highly resistant. We hypothesized that the variation in susceptibility is due to differences in the composition of secondary phenolic compounds in host plant tissues. To test this hypothesis, phenolic compounds of leaf extracts taken from both species of Melampyrum were analyzed with HPLC. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used for data processing. PCA indicated difference between the species, with the first two components explaining more than 70 % of the total variance of data that was separated into two distinct groups in a scatter plot. Two clusters, formed by the two species, were also suggested by HCA. Phenolic acids (such as chlorogenic acid), flavanones and apigenin flavonoids dominated the profiles of rust-resistant M. pratense, while kaempferol and luteolin flavonoids occurred in high relative concentrations in rust-susceptible M. sylvaticum. Our results suggest that phenolics may contribute to resistance or susceptibility of Melampyrum to Cronartium rusts as one factor. Future studies on the mode of action of phenolics in this interaction are thus warranted.


Alternate hosts Hemiparasites Scots pine blister rust Secondary chemicals 



We thank Dr. Michael Hardman for checking the language and Ms. Iryna Semashko for assistance with laboratory analyses.


  1. Boyer, M. G. (1964). Studies on white pine phenols in relation to blister rust. Canadian Journal of Botany, 42, 979–987.CrossRefGoogle Scholar
  2. Burda, S., & Oleszek, W. (2001). Antioxidant and antiradical activities of flavonoids. Journal of Agricultural Food Chemistry, 49, 2774–2779.CrossRefPubMedGoogle Scholar
  3. Caetano-Anollés, G., Crist-Estes, D. K., & Bauer, W. D. (1988). Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. Journal of Bacteriology, 170(7), 3164–3169.PubMedCentralPubMedGoogle Scholar
  4. Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26, 343–356.CrossRefPubMedGoogle Scholar
  5. Fokom, R., Nana Wakam, L., Tchameni, S., & Nwaga, D. (2010). Arbuscular Mycorrhizal Fungi (AMF) colonisation and Rhizobia nodulation of cowpea as affected by flavonoid application. Research Journal of Agriculture & Biological Sciences, 6(6), 1015–1021.Google Scholar
  6. Gäumann, E. (1959). Die Rostpilze Mitteleuropas. Beiträge zur Kryptogamenflora der Schweiz, 12, 85–93.Google Scholar
  7. Golowska, S., Lukasik, I., Kapusta, I., & Janda, B. (2012). Do the contents of luteolin, tricin and chryseriol glycosides in alfalfa (Medigo sativa L.) affect the behavior of pea aphid (Acyrthosiphon pisum)? Polish Journal of Environmental Studies, 21, 1613–1619.Google Scholar
  8. Hakulinen, J. (1998). Nitrogen-induced reduction in leaf phenolic level is not accompanied by increased rust frequency in a compatible willow (Salix myrsinifolia)—Melampsora rust interaction. Physiologia Plantarum, 102, 101–110.CrossRefGoogle Scholar
  9. Hakulinen, J., Sorjonen, S., & Julkunen-Tiitto, R. (1999). Leaf phenolics of willow clones differing in resistance to Melampsora rust. Physiologia Plantarum, 105, 662–669.CrossRefGoogle Scholar
  10. Hämet-Ahti, L., Suominen, J., Ulvinen, T., & Uotila, P. (1998). Retkeilykasvio. Helsinki: Suomen Luonnontieteellinen keskusmuseo, Kasvimuseo.Google Scholar
  11. Hanover, J. W., & Hoff, R. J. (1966). A Comparison of phenolic constituents of Pinus monticola resistant and susceptible to Cronartium ribicola. Physiologia Plantarum, 19, 554–562.CrossRefGoogle Scholar
  12. Hudgins, J. W., McDonald, G. I., Zambino, P. J., Klopfenstein, N. B., & Franceschi, V. R. (2005). Anatomical and cellular responses of Pinus monticola stem tissues to invasion by Cronartium ribicola. Forest Pathology, 35(6), 423–443.CrossRefGoogle Scholar
  13. Hylander, N., Jørstad, I., & Nannfeldt, J. A. (1953). Enumeratio Uredinearum Scandinavicarum. Opera Botanica, 1, 12–13.Google Scholar
  14. Kaitera, J. (1999). Cronartium flaccidum fruitbody production on Melampyrum spp. and some important alternate hosts to pine. European Journal of Forest Pathology, 29, 391–398.CrossRefGoogle Scholar
  15. Kaitera, J. (2000). Analysis of Cronartium flaccidum lesion development on pole-stage Scots pines. Silva Fennica, 34, 21–27.CrossRefGoogle Scholar
  16. Kaitera, J., & Hantula, J. (1998). Melampyrum sylvaticum, a new alternate host for pine stem rust Cronartium flaccidum. Mycologia, 90, 1028–1030.CrossRefGoogle Scholar
  17. Kaitera, J., & Hiltunen, R. (2011). Susceptibility of Pedicularis spp. to Cronartium ribicola and C. flaccidum in Finland. Forest Pathology, 41, 237–242.CrossRefGoogle Scholar
  18. Kaitera, J., & Hiltunen, R. (2012). New alternate hosts for the rusts Cronartium ribicola and Cronartium flaccidum in Finland. Canadian Journal of Forest Research, 42, 1661–1668.CrossRefGoogle Scholar
  19. Kaitera, J., & Nuorteva, H. (2003a). Cronartium flaccidum produces uredinia and telia on Melampyrum nemorosum and on Finnish Vincetoxicum hirundinaria. Forest Pathology, 33, 205–213.CrossRefGoogle Scholar
  20. Kaitera, J., & Nuorteva, H. (2003b). Relative susceptibility of four Melampyrum species to Cronartium flaccidum. Scandinavian Journal of Forest Research, 18, 499–504.CrossRefGoogle Scholar
  21. Kaitera, J., Aalto, T., & Jalkanen, R. (1994). Effect of resin-top disease caused by Peridermium pini on the volume and value of Pinus sylvestris saw timber and pulpwood. Scandinavian Journal of Forest Research, 9, 376–381.CrossRefGoogle Scholar
  22. Kaitera, J., Seitamäki, L., Hantula, J., Jalkanen, R., & Kurkela, T. (1999). Inoculation of known and potential alternate hosts with Peridermium pini and Cronartium flaccidum aeciospores. Mycological Research, 103, 235–241.CrossRefGoogle Scholar
  23. Kaitera, J., Nuorteva, H., & Hantula, J. (2005). Distribution and frequency of Cronartium flaccidum on Melampyrum spp. in Finland. Canadian Journal of Forest Research, 35, 229–234.CrossRefGoogle Scholar
  24. Kaitera, J., Hantula, J., & Nevalainen, S. (2011). Distribution and frequency of Cronartium flaccidum on Melampyrum spp. in permanent sample plots in Finland. Scandinavian Journal of Forest Research, 26, 413–420.CrossRefGoogle Scholar
  25. Kaitera, J., Hiltunen, R., & Samils, B. (2012). Alternate host ranges of Cronartium flaccidum and Cronartium ribicola in northern Europe. Botany, 90, 694–703.CrossRefGoogle Scholar
  26. Kaitera, J., Hiltunen, R., & Hantula, J. (2015). Cronartium rusts sporulation on hemiparasitic plants. Plant Pathology, 64(3), 738–747.CrossRefGoogle Scholar
  27. Keinänen, M., & Julkunen-Tiitto, R. (1996). Effect of sample preparation method on birch (Betula pendula Roth) leaf phenolics. Journal of Agricultural and Food Chemistry, 44, 2724–2727.CrossRefGoogle Scholar
  28. Leiss, K. A., Maltese, F., Choi, Y. H., Verpoorte, R., & Klinkhamer, P. G. L. (2009). Identification of chlorogenic acid as a resistance factor for thrips in Chrysanthemum. Plant Physiology, 150, 1567–1575.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Lizzi, Y., Rogger, J. P., & Coulomb, P. J. (1995). Behavior of the phenolic compounds on Capsicum annuum leaves infected with Phytophthora capsici. Journal of Phytopathology, 143, 619–627.CrossRefGoogle Scholar
  30. Marinova, K., Kleinschmidt, K., Weissenböck, G., & Klein, M. (2007). Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Plant Physiology, 144(1), 432–444.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Martinsson, O., & Nilsson, B. (1987). The impact of Cronartium flaccidum on the growth of Pinus sylvestris. Scandinavian Journal of Forest Research, 2, 349–357.CrossRefGoogle Scholar
  32. Melo, G. A., Shimizu, M. M., & Mazzafera, P. (2006). Polyphenoloxidase activity in coffee leaves and its role in resistance against the coffee leaf miner and coffee leaf rust. Phytochemistry, 67(3), 277–285.CrossRefPubMedGoogle Scholar
  33. Moricca, S., & Ragazzi, A. (1996). Culture characteristics and variation of Cronartium flaccidum isolates. Canadian Journal of Botany, 74(6), 924–933.CrossRefGoogle Scholar
  34. Nagle, A. M., Mcpherson, B. A., Wood, D. L., Garbelotto, M., & Bonello, P. (2011). Relationship between field resistance to Phytophthora ramorum and constitutive phenolic chemistry of coast live oak. Forest Pathology, 41, 464–469.CrossRefGoogle Scholar
  35. Naumov, P., Kuzmanovski, I., & Stefova, M. (1998). Flavonoids of Verbascum scardicolum and Melampyrum scardicum. Bulletin of the Chemists and Technologists of Macedonia, 17(1), 41–44.Google Scholar
  36. Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63, 1035–1042.CrossRefPubMedGoogle Scholar
  37. Samils, B., Ihrmark, K., Kaitera, J., Hansson, P., & Barklund, P. (2010). Genetic structure of Scots pine blister rust (Cronartium flaccidum and Peridermium pini). Phytopathologia Mediterranea, 49, 428.Google Scholar
  38. Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Vierheilig, H., Ocampo, J. A., & Godeas, A. (2005a). Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomerus species in the presence of root flavonoids. Journal of Plant Physiology, 162, 625–633.CrossRefPubMedGoogle Scholar
  39. Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Vierheilig, H., Ocampo, J. A., & Godeas, A. (2005b). Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycological Research, 109(7), 789–794.CrossRefPubMedGoogle Scholar
  40. Sniezko, R. A., Smith, J., Liu, J.-J., & Hamelin, R. C. (2014). Genetic resistance to fusiform rust in southern pines and white pine blister rust in white pines—a contrasting tale of two rust pathosystems—current status and future prospects. Forests, 5(9), 2050–2083.CrossRefGoogle Scholar
  41. Witzell, J., & Martín, J. A. (2008). Phenolic metabolites in pathogen resistance of northern forest trees—past experiences and future prospects. Canadian Journal of Forest Research, 38, 2711–2727.CrossRefGoogle Scholar
  42. Zampino, P. J. (2010). Biology and pathology of Ribes and their implications for management of white pine blister rust. Forest Pathology, 40, 264–291.CrossRefGoogle Scholar
  43. Zielinski, A. A. F., Haminiuk, C. W. I., Alberti, A., Nogueira, A., Demiate, I. M., & Granato, D. (2014). A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Research International, 60, 246–254.CrossRefGoogle Scholar
  44. Ziller, W. G. (1974). The tree rusts of western Canada. Canadian Forest Service Publications, 1329, 1–272.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  1. 1.Natural Resources Institute FinlandUniversity of OuluOuluFinland
  2. 2.Faculty of Science and ForestryUniversity of Eastern FinlandJoensuuFinland
  3. 3.Institut för Sydsvensk SkogsvetenskapAlnarpSweden

Personalised recommendations