Skip to main content
Log in

Evaluation of Fusarium graminearum inoculation methods in maize ears and hybrid reaction to Gibberella ear rot under southern Brazilian environmental conditions

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Natural infection of Gibberella ear rot (GER) of maize, caused by Fusarium graminearum, is not consistent from year to year in southern Brazil, thus an effective approach to identifying resistance to GER is to use artificial inoculation methods to test germplasm, however not widely implemented in Brazil where no maize hybrids are known with resistance to GER. A GER index, Fusarium-damaged kernels (FDK), and Fusarium-infected kernels (FIK) were used to evaluate the inoculation methods and hybrids resistance. Four different inoculation methods were tested on four hybrids in three environments during the 2011/12 growing season. Silk-channel, silk-channel-spray, pin and collar-deposition method were tested. For all hybrids, the pin method consistently showed the highest GER index values followed by the silk-channel method. Collar-deposition method was also able to infect the ears, suggesting attention to this point of infection. These two best methods were used to screen the 20 hybrids for GER in two environments during the 2012/13. The pin method showed 2-fold more GER index, FDK, and FIK (P < 0.05) than the silk-channel method. Silk-channel and pin method showed a significant positive GER index correlation (r = 0.646; P = 0.001). The hybrids appeared to have a form of silk resistance rather than kernel resistance, since the majority (95 %) of hybrids tested were either moderately susceptible (MS) or susceptible (S) to F. graminearum when pin method was used. However, 65 % of the hybrids were classified as MS or S in the silk-channel method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, M. L., Taylor, J. H., Jie, L., Sun, G., William, M., Kasha, K. J., & Pauls, K. P. (2005). Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome/National Research Council Canada, 48, 521–533.

    CAS  Google Scholar 

  • Anvisa. (2011). Resolução RDC 7. Dispõe sobre limites máximos tolerados (LMT) para micotoxinas em alimentos., constante do Anexo desta Resolução. Diário Oficial da União; Poder Executivo, de 26 de fevereiro de 2011. Retrieved from http://www.abic.com.br/publique/media/IN07-2011-Ocratoxina.pdf.

  • Casa, R. T., Reis, E. M., Blum, M. M. C., Scheer, O., Zanata, T., & Cardoso, C. (2004a). Efeito do número de espiguetas gibereladas sobre o rendimento, o peso de mil grão e a incidência de Fusarium graminearum em grãos de trigo. Summa Phytopathologica, 30, 277–280.

    Google Scholar 

  • Casa, R. T., Reis, E. M., Blum, M. M. C., Bogo, A., Scheer, O., & Zanata, T. (2004b). Danos causados pela infecção de Gibberella zeae em trigo. Fitopatologia Brasileira, 29, 289–293.

    Google Scholar 

  • Chungu, C., Mather, D., Reid, L. M., & Hamilton, R. (1996a). Comparison of techniques for inoculating maize silk, kernel, and cob tissues with Fusarium graminearum. Plant Disease, 80, 81–84.

    Article  Google Scholar 

  • Chungu, C., Mather, D., Reid, L. M., & Hamilton, R. (1996b). Inheritance of kernel resistance to Fusarium graminearum in maize. Journal of Heredity, 87, 382–385.

    Article  Google Scholar 

  • Clements, M. J., Kleinschmidt, C. E., Maragos, C. M., Pataky, J. K., & White, D. G. (2003). Evaluation of inoculation techniques for Fusarium ear rot and fumonisin contamination of corn. Plant Disease, 87, 147–153.

    Article  CAS  Google Scholar 

  • Conab. (2015). Levantamento de safras de 2014/2015. Retrieved from http://www.conab.gov.br/OlalaCMS/uploads/arquivos/15_04_10_09_22_05_boletim_graos_abril_2015.pdf.

  • Creppy, E. E. (2002). Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology Letters, 127, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Desjardins, A. E., & Proctor, R. H. (2007). Molecular biology of Fusarium mycotoxins. International Journal of Food Microbiology, 119, 47–50.

    Article  CAS  PubMed  Google Scholar 

  • Dill-Macky, R., & Jones, R. K. (2000). The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Disease, 84, 71–76.

    Article  Google Scholar 

  • Faostat. (2014). Food and Agricultural commodities production. Retrieved from http://faostat.fao.org/site/339/default.aspx.

  • Gilbert, J., Clear, R. M., Ward, T. J., Gaba, D., Tekauz, A., Turkington, T. K., & O’Donnell, K. (2010). Relative aggressiveness and production of 3- or 15-acetyl deoxynivalenol and deoxynivalenol by Fusarium graminearum in spring wheat. Canadian Journal of Plant Pathology, 32, 146–152.

    Article  CAS  Google Scholar 

  • Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525.

    Article  CAS  PubMed  Google Scholar 

  • Goswami, R. S., & Kistler, H. C. (2005). Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology, 95, 1397–1404.

    Article  CAS  PubMed  Google Scholar 

  • Jansen, C., von Wettstein, D., Schäfer, W., Kogel, K.-H., Felk, A., & Maier, F. J. (2005). Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences of the United States of America, 102, 16892–16897.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuhnem, P. R., Del Ponte, E., Dong, Y., & Bergstrom, G. C. (2015). Fusarium graminearum Isolates from wheat and maize in New York show similar range of aggressiveness and toxigenicity in cross-species pathogenicity tests. Phytopathology, 105, 441–448.

    Article  CAS  PubMed  Google Scholar 

  • Landschoot, S., Audenaert, K., Waegeman, W., De Baets, B., & Haesaert, G. (2013). Influence of maize–wheat rotation systems on Fusarium head blight infection and deoxynivalenol content in wheat under low versus high disease pressure. Crop Protection, 52, 14–21.

    Article  CAS  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Ames, IA, USA: Wiley Online Library. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/9780470278376.

  • Löffler, M., Kessel, B., Ouzunova, M., & Miedaner, T. (2010). Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays L.) inbred lines. TAG/Theoretical and Applied Genetics, 120, 1053–1062.

    Article  Google Scholar 

  • McKinney, H. H. (1923). Influence of soil, temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.

    Google Scholar 

  • McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., & Van Sanford, D. (2012). A unified effort to fight an enemy of wheat and barley: Fusarium Head Blight. Plant Disease, 96, 1712–1728.

    Article  Google Scholar 

  • Mesterházy, Á., Lemmens, M., & Reid, L. M. (2012). Breeding for resistance to ear rots caused by Fusarium spp. in maize - a review. Plant Breeding, 131, 1–19.

    Article  Google Scholar 

  • Munkvold, G. P. (2003). Epidemiology of Fusarium diseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 109, 705–713.

    Article  CAS  Google Scholar 

  • Pereyra, S. A., & Dill-Macky, R. (2008). Colonization of the residues of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Disease, 92, 800–807.

    Article  Google Scholar 

  • Pereyra, S. A., Dill-Macky, R., & Sims, A. L. (2004). Survival and inoculum production of Gibberella zeae in wheat residue. Plant Disease, 88, 724–730.

    Article  Google Scholar 

  • Pestka, J. J. (2010). Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84, 663–679.

    Article  CAS  PubMed  Google Scholar 

  • Presello, D. A., Reid, L. M., & Mather, D. E. (2004). Resistance of Argentine maize germplasm to Gibberella and Fusarium ear rots. Maydica, 49, 73–81.

    Google Scholar 

  • Presello, D. A., Reid, L. M., Butler, G., & Mather, D. E. (2005). Pedigree selection for Gibberella ear rot resistance in maize. Euphytica, 143, 1–8.

    Article  Google Scholar 

  • Purahong, W., Nipoti, P., Pisi, A., Lemmens, M., & Prodi, A. (2014). Aggressiveness of different Fusarium graminearum chemotypes within a population from Northern-Central Italy. Mycoscience, 55, 63–69.

    Article  Google Scholar 

  • Reid, L. M., & Hamilton, R. l. (1996). Effects of inoculation position, timing, macroconidial concentration, and irrigation on resistance of maize to Fusarium graminearum infection through kernels. Canadian Journal of Plant Pathology, 18, 279–285.

    Article  Google Scholar 

  • Reid, L. M., Hammond-Kosack, K., Mather, D., Hamilton, R., & Bolton, A. (1992). Genotypic differences in the resistance of maize silk to Fusarium graminearum. Canadian Journal of Plant Pathology, 14, 211–214.

    Article  Google Scholar 

  • Reid, L. M., Hamilton, R., & Mather, D. (1995). Effect of macroconidial suspension volume and concentration on expression of resistance to Fusarium graminearum in maize. Plant Disease, 79, 461–466.

    Article  Google Scholar 

  • Reid, L. M., Mather, D., & Hamilton, R. (1996). Distribution of deoxynivalenol in Fusarium graminearum-infected maize ears. Phytopathology, 86, 110–114.

    Article  CAS  Google Scholar 

  • Reid, L. M., Woldemariam, T., Zhu, X., Stewart, D. W., & Schaafsma, A. W. (2002). Effect of inoculation time and point of entry on disease severity in Fusarium graminearum, Fusarium verticillioides, or Fusarium subglutinans inoculated maize ears. Canadian Journal of Plant Pathology, 24, 162–167.

    Article  Google Scholar 

  • Reis, E., Casa, R., & Bianchin, V. (2011). Controle de doenças de plantas pela rotação de culturas. Summa Phytopathologica, 4, 85–91.

    Google Scholar 

  • Schaafsma, A. W., Miller, J. D., Savard, M. E., & Ewing, R. J. (1993). Ear rot development and mycotoxin production in corn in relation to inoculation method, corn hybrid, and species of Fusarium. Canadian Journal of Plant Pathology, 15, 185–192.

    Article  CAS  Google Scholar 

  • Schaafsma, A. W., Nicol, R. W., & Reid, L. M. (1997). Evaluating commercial maize hybrids for resistance to Gibberella ear rot. European Journal of Plant Pathology, 103, 737–746.

    Article  Google Scholar 

  • Spolti, P., Del Ponte, E. M., Cummings, J. A., Dong, Y., & Bergstrom, G. C. (2014). Fitness attributes of Fusarium graminearum isolates from wheat in New York possessing a 3-ADON or 15-ADON Trichothecene Genotype. Phytopathology, 104, 513–519.

    Article  PubMed  Google Scholar 

  • Stewart, D. W., Reid, L. M., Nicol, R. W., & Schaafsma, A. W. (2002). A mathematical simulation of growth of Fusarium in maize ears after artificial inoculation. Phytopathology, 92, 534–541.

    Article  CAS  PubMed  Google Scholar 

  • Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195–209.

    Article  Google Scholar 

  • van Egmond, H. P., Schothorst, R. C., & Jonker, M. A. (2007). Regulations relating to mycotoxins in food: perspectives in a global and European context. Analytical and Bioanalytical Chemistry, 389, 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E., & O’Donnell, K. (2002). Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proceedings of the National Academy of Sciences of the United States of America, 99, 9278–9283.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Ian M. Small (Cornell University) for critically reviewing a preliminary version of the manuscript. This research was financial and technical supported by Du Pont (Pioneer Seeds Subdivision), the National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Level -or Education- Personnel (CAPES) and Santa Catarina State University (UDESC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roberto Kuhnem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nerbass, F.R., Casa, R.T., Kuhnem, P.R. et al. Evaluation of Fusarium graminearum inoculation methods in maize ears and hybrid reaction to Gibberella ear rot under southern Brazilian environmental conditions. Eur J Plant Pathol 144, 45–53 (2016). https://doi.org/10.1007/s10658-015-0746-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0746-0

Keywords

Navigation