Skip to main content
Log in

Cold Stress-Induced Disease Resistance (SIDR): indirect effects of low temperatures on host-pathogen interactions and disease progress in the grapevine powdery mildew pathosystem

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Erysiphe necator is an obligate biotroph capable of infecting three genera within the Vitaceae (Vitis, Parthenocissus, and Ampelopsis). The pathogen inhabits a niche unique to most powdery mildews, i.e., wholly external mycelial growth supported by haustoria within the subtending host epidermal cells. This growth habit coupled with its biotrophic reliance on the host makes E. necator sensitive to both direct effects of abiotic stresses on the pathogen and indirect abiotic effects via the host responses. Development of the pathogen during acute cold events (e.g., 1 h at 4 °C) results in death of hyphal segments and a prolonged latency, an effect further increased by the development of ontogenic resistance as epidermal tissues of leaves and berries age. Acute cold events can also stress the host prior to the arrival of the pathogen, and thereby reduce susceptibility to infection via cold Stress-Induced Disease Resistance (SIDR), a recently described phenomenon. This effect requires approximately 24 h post-cold before maximal resistance effect occurs, and is also transient in that the effect diminishes to a basal level within 48 h after exposure. Although the phenotypic responses to cold SIDR may be similar to those observed on ontogenically-resistant leaves, the effects of cold SIDR and ontogenic resistance are additive. Sufficient tools are now available for investigating the mechanistic basis of cold SIDR. While pathosystems involving obligate biotrophs complicate research on direct and indirect environmental effects on the pathogen, this requisite interaction also creates interesting systems to understand how the condition of the host may influence subsequent disease development. At the population level, the effects of repeated cold events have profound effects on the nature of epidemic progress and implications for management of grape powdery mildew. The objective in this review is to summarize our current knowledge regarding the indirect and consequential effects of low temperature on the development of grapevine powdery mildew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., & Genschik, P. (2008). The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. The Plant Cell, 20, 2117–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin, C. N., & Wilcox, W. F. (2011). Effects of fruit-zone leaf removal, training systems, and irrigation on the development of grapevine powdery mildew. American Journal of Enology and Viticulture, 62, 193–198.

    Article  Google Scholar 

  • Austin, C. N., & Wilcox, W. F. (2012). Effects of sunlight exposure on grapevine powdery mildew development. Phytopathology, 102, 857–866.

    Article  PubMed  Google Scholar 

  • Bendek, C. E., Campbell, P. A., Torres, R., Donoso, A., & Latorre, B. A. (2007). The risk assessment index in grape powdery mildew control decisions and the effect of temperature and humidity on conidial germination of Erysiphe necator. Spanish Journal of Agricultural Research, 5, 522–532.

    Article  Google Scholar 

  • Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaption to temperature in higher plants. Annual Review of Plant Physiology, 31, 491–543.

    Article  Google Scholar 

  • Bogoni, M., Panont, A., Valenti, L., & Scienza, A. (1993). Effects of soil physical and chemical conditions on grapevine nutritional status. Acta Horticulturae, 383.

  • Buttrose, M. S., & Hale, C. R. (1973). Effect of temperature on development of the grapevine inflorescence after bud burst. American Journal of Enology and Viticulture, 24, 14–16.

    Google Scholar 

  • Caffi, T., Rossi, V., Legler, S. E., & Bugiani, R. (2011). A mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathology, 60, 522–531.

    Article  Google Scholar 

  • Caffi, T., Legler, S. E., & Rossi, V. (2012). Evaluation of a warning system for early-season control of grapevine powdery mildew. Plant Disease, 96, 104–110.

    Article  Google Scholar 

  • Calonnec, A., Cartolaro, P., Naulin, J. M., Bailey, D., & Langlais, M. (2008). A host-pathogen simulation model: powdery mildew of grapevine. Plant Pathology, 57, 493–508.

    Article  Google Scholar 

  • Carroll, J. E., & Wilcox, W. F. (2003). Effects of humidity on the development of grapevine powdery mildew. Phytopathology, 93, 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  • Chellemi, D. O., & Marois, J. J. (1991a). Development of a demographic growth model for Uncinula necator by using a microcomputer spreadsheet program. Phytopathology, 81, 250–254.

    Article  Google Scholar 

  • Chellemi, D. O., & Marois, J. J. (1991b). Effect of fungicide and water on sporulation of Uncinula necator. Plant Disease, 75, 455–457.

    Article  CAS  Google Scholar 

  • Chellemi, D. O., & Marois, J. J. (1991c). Sporulation of Uncinula necator on grape leaves as influenced by temperature and cultivar. Phytopathology, 81, 197–201.

    Article  Google Scholar 

  • Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.-h., Hong, X., Agarwal, M., & Zhu, J.-K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes and Development, 17, 1043–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury, R. A., McRoberts, N., & Gubler, W. D. (2014). Effects of punctuated heat stress on the grapevine powdery mildew pathogen, Erysiphe necator. Phytopathologia Mediterranea, 53, 148–158.

    Google Scholar 

  • Crosatti, C., Rizza, F., Badeck, F. W., Mazzucotelli, E., & Cattivelli, L. (2013). Harden the chloroplast to protect the plant. Physiologia Plantarum, 147, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Delp, C. J. (1954). Effect of temperature and humidity on the grape powdery mildew fungus. Phytopathology, 44, 615–626.

    Google Scholar 

  • Diehl, H. J., & Heintz, C. (1987). Studies on the generative reproduction of grapevine powdery mildew (Uncinula necator Berk.). Vitis, 26, 114–122.

    Google Scholar 

  • Dry, P. R., & Loveys, B. R. (1998). Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Australian Journal of Grape and Wine Research, 4, 140–148.

    Article  Google Scholar 

  • Ferguson, J. C., Tarara, J. M., Mills, L. J., Grove, G. G., & Keller, M. (2011). Dynamic thermal time model of cold hardiness for dormant grapevine buds. Annals of Botany (London), 107, 389–396.

    Article  Google Scholar 

  • Ferguson, J. C., Moyer, M. M., Mills, L. J., Hoogenboom, G., & Keller, M. (2014). Modeling dormant bud cold hardiness and budbreak in 23 Vitis genotypes reveals variation by region of origin. American Journal of Enology and Viticulture, 65, 59–71.

    Article  Google Scholar 

  • Ferrini, F., Mattii, G. B., & Nicese, F. P. (1995). Effect of temperatre on key physiological responses of grapevine leaf. American Journal of Enology and Viticulture, 46, 375–379.

    CAS  Google Scholar 

  • Flexas, J., Badger, M., Chow, W. S., Medrano, H., & Osmond, C. B. (1999). Analysis of the relative increase in photosynthetic O2 uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress. Plant Physiology, 121, 675–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadoury, D. M., & Pearson, R. C. (1988). Initiation, development, dispersal and survival of cleistothecia of Uncinula necator in New York vineyards. Phytopathology, 78, 1413–1421.

    Article  Google Scholar 

  • Gadoury, D. M., & Pearson, R. C. (1990). Germination of ascospores and infection of Vitis by Uncinula necator. Phytopathology, 80, 1198–1203.

    Article  Google Scholar 

  • Gadoury, D. M., Pearson, R. C., Seem, R. C., & Park, E. W. (1997a). Integrating the control programs for fungal diseases of grapevine in the northeastern United States. Viticultural and Enological Sciences, 52, 140–147.

  • Gadoury, D. M., Seem, R. C., Magarey, P. A., Emmett, R., & Magarey, R. (1997b). Effects of environment and fungicides on epidemics of grape powdery mildew: considerations for practical model development and disease management. Viticultural and Enological Sciences, 52, 225–229.

  • Gadoury, D. M., Seem, R. C., Ficke, A., & Wilcox, W. F. (2003). Ontogenic resistance to powdery mildew in grape berries. Phytopathology, 93, 547–555.

    Article  PubMed  Google Scholar 

  • Greer, D. H., & Weedon, M. M. (2013). The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening. Frontiers in Plant Science, 4, 1–9.

    Article  Google Scholar 

  • Haake, V., Cook, D., Riechmann, J. L., Pineda, O., Thomashow, M. F., & Zhang, J. Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology, 130, 639–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, T. W., & Mahaffee, W. F. (2001). Impact of vine shelter use on development of grape powdery mildew. American Journal of Enology and Viticulture, 52, 204–209.

    Google Scholar 

  • Heintz, C., & Blaich, R. (1990). Ultastructural and histochemical studies on interactions between Vitis vinifera L. and Uncinula necator (Schw.) burr. New Phytologist, 115, 107–117.

    Article  CAS  Google Scholar 

  • Hendrickson, L., Ball, M. C., Wood, J. T., Chow, W. S., & Furbank, R. T. (2004). Low temperature effects on photosynthesis and growth of grapevine. Plant, Cell and Environment, 27, 795–809.

    Article  CAS  Google Scholar 

  • Jailloux, F., Willocquet, L., Chapuis, L., & Froidefond, G. (1999). Effect of weather factors on the release of ascospores of Uncinula necator, the cause of grape powdery mildew, in Bordeaux region. Canadian Journal of Botany, 77, 1044–1051.

    Article  Google Scholar 

  • Jones, G. V., & Davis, R. E. (2000). Climate influences on grapevine phenology, grape composition and wine production and quality for Bordeaux, France. American Journal of Enology and Viticulture, 51, 249–261.

    Google Scholar 

  • Kast, W.K., & Bleyer, K. (2010). The expert system OiDiag-2.2- a useful tool for the precise scheduling of sprays against powdery mildew of vine (Erysiphe necator) Schwein. Proc. 6th International Workshop on Grapevine Downy and Powdery Mildew, Bordeaux 2010. In A. Calonnec et al. (Ed), Bordeaux: INRA-INITA.

  • Keller, M., & Tarara, J. M. (2010). Warm spring temperatures induce persistent season-long changes in shoot development in grapevines. Annals of Botany, 106, 131–141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller, M., Rogiers, S. Y., & Schultz, H. R. (2003). Nitrogen and ultaviolet radiation modify grapevine susceptibility to powdery mildew. Vitis, 42, 87–94.

    CAS  Google Scholar 

  • Knight, M. R., & Knight, H. (2012). Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytologist, 195, 737–751.

    Article  CAS  PubMed  Google Scholar 

  • Knight, M. R., Campbell, A. K., Smith, S. M., & Trewavas, A. J. (1991). Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature, 352, 524–526.

    Article  CAS  PubMed  Google Scholar 

  • Kohorn, B. D. (2000). Plasma membrane-cell wall contacts. Update on Cell Biology, 124, 31–38.

    CAS  Google Scholar 

  • Legler, S. E., Caffi, T., & Rossi, V. (2012a). A nonlinear model for temperature-dependent development of Erysiphe necator chamosthecia on grapevine leaves. Plant Pathology, 61, 96–105.

    Article  Google Scholar 

  • Legler, S.E., Caffi, T., & Rossi, V. (2012b). Sanitation and disease modeling can help powdery mildew control in organic viticulture (abstr.). Phytopathology.

  • Mellersh, D. G., & Heath, M. C. (2001). Plasma membrane - cell wall ashesion is required for expression of plant defense responses during fungal penetration. The Plant Cell, 13, 413–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merry, A. M., Evans, K. J., Corkrey, R., & Wilson, S. J. (2013). Coincidence of maximum severity of powdery mildew on grape leaves and the carbohyrdrate sink-to-source transition. Plant Pathology (Oxford), 62, 842–850.

    Article  CAS  Google Scholar 

  • Miura, K., & Furumoto, T. (2013). Cold signaling and cold response in plants. International Journal of Molecular Sciences, 14, 5312–5337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura, K., & Hasegawa, P. M. (2008). Regulation of cold signaling by sumoylation of ICE1. Plant Signaling & Behavior, 3, 52–53.

    Article  Google Scholar 

  • Miura, K., Jin, J. B., Lee, J., Yoo, C. Y., Stirm, V., Miura, T., Ashworth, E. N., Bressan, R. A., Yun, D.-J., & Hasegawa, P. M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. The Plant Cell, 19, 1403–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)- Gene Regulatory Mechanisms, 1819, 86–96.

    Article  CAS  Google Scholar 

  • Moyer, M. M., Gadoury, D. M., Cadle-Davidson, L., Dry, I. B., Magarey, P. A., Wilcox, W. F., & Seem, R. C. (2010). Effects of acute low temperature events on the development of Erysiphe necator and susceptibility of Vitis vinifera. Phytopathology, 100, 1240–1249.

    Article  PubMed  Google Scholar 

  • Moyer, M. M., Gadoury, D. M., Wilcox, W. F., & Seem, R. C. (2014). Release of Erysiphe necator ascospores and impact of early-season disease pressure on Vitis vinifera fruit infection. American Journal of Enology and Viticulture, 65, 315–324.

    Article  Google Scholar 

  • Novillo, F., Medina, J., & Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences, 104, 21002–21007.

    Article  CAS  Google Scholar 

  • Novillo, F., Medina, J., Rodríguez-Franco, M., Neuhaus, G., & Salinas, J. (2011). Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress. Journal of Experimental Botany, 293–304.

  • Öquist, G., & Huner, N. P. A. (2003). Photosynthesis of overwintering evergreen plants. Annual Review of Plant Biology, 54, 329–355.

    Article  PubMed  Google Scholar 

  • Örvar, B. L., Sangwan, V., Omann, F., & Dhindsa, R. S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. The Plant Journal, 23, 785–794.

    Article  PubMed  Google Scholar 

  • Palusa, S. G., Ali, G. S., & Reddy, A. S. N. (2007). Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. The Plant Journal, 49, 1091–1107.

    Article  CAS  PubMed  Google Scholar 

  • Parker, A. K., De Cortázar-Atauri, I. G., Van Leeuwen, C., & Chuine, I. (2011). General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17, 206–216.

    Article  Google Scholar 

  • Peduto, F., Backup, P., Hand, E. K., Janousek, C. N., & Gubler, W. D. (2013). Effect of high temperature and exposure time on Erysiphe necator growth and reproduction: Revisions to the UC Davis powdery pildew risk index. Plant Disease, 97, 1438–1447.

    Article  Google Scholar 

  • Rossi, V., Caffi, T., & Legler, S. E. (2010). Dynamics of ascospore maturation and discharge in Erysiphe necator, the causal agent of grape powdery mildew. Phytopathology, 100, 1321–1329.

    Article  PubMed  Google Scholar 

  • Rumbolz, J., Kassemeyer, H. H., Steinmetz, V., Deising, H. B., Mendgen, K., Mathys, D., Wirtz, S., & Guggenheim, R. (2000). Differentiation of infection structures of the powdery mildew fungus Uncinula necator and adhesion to the host cuticle. Canadian Journal of Botany, 78, 409–421.

    Google Scholar 

  • Sall, M. A. (1980). Epidemiology of grape powdery mildew: a model. Phytopathology, 70, 338–342.

    Article  Google Scholar 

  • Seem, R. C. (1984). Disease incidence and severity relationships. Annual Review of Phytopathology, 22, 133–150.

    Article  Google Scholar 

  • Tonkinson, C. L., Lyndon, R. F., Arnold, G. M., & Lenton, J. R. (1997). The effects of temperature and the Rht3 dwarfing gene on growth, cell extension, and gibberellin content and responsiveness in the wheat leaf. Journal of Experimental Botany, 48, 963–970.

    Article  CAS  Google Scholar 

  • Vanderplank, J. E. (1982). Host-pathogen interactions in plant disease. New York: Academic Press, Inc.

    Google Scholar 

  • Xiao, H., Tattersall, E. A. R., Siddiqua, M. K., Cramer, G. R., & Nassuth, A. (2008). CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant, Cell & Environment, 31, 1–10.

    CAS  Google Scholar 

  • Zhang, Y., Mechlin, T., & Dami, I. E. (2011). Foliar application of abscisic acid induces dormancy responses in greenhouse-grown grapevines. Hortscience, 46, 1271–1277.

    CAS  Google Scholar 

  • Zhou, X., Wang, G., Sutoh, K., Zhu, J.-K., & Zhang, W. (2008). Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1779, 780–788.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contributions of students and technicians who helped to collect data related to acute cold responses, including: Bill Weldon, Kiersten Bekoscke, Mary Jean Welser, Michelle Schaub, Hema Kasinathan, Anna Nowogrodzki, Paige Appleton, Jackie Lillis, and Breanne Kisselstein. Funding was provided by the United States Department of Agriculture Viticulture Consortium-East, the Pennsylvania Wine Marketing Board, the New York Wine and Grape Foundation, the New York Grape Production Research Fund, the Kaplan Fund, and the American Society for Enology and Viticulture National and Eastern Sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance Cadle-Davidson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyer, M.M., Londo, J., Gadoury, D.M. et al. Cold Stress-Induced Disease Resistance (SIDR): indirect effects of low temperatures on host-pathogen interactions and disease progress in the grapevine powdery mildew pathosystem. Eur J Plant Pathol 144, 695–705 (2016). https://doi.org/10.1007/s10658-015-0745-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0745-1

Keywords

Navigation