European Journal of Plant Pathology

, Volume 143, Issue 4, pp 833–845 | Cite as

Parasitism effects on white clover by root-knot and cyst nematodes and molecular separation of Heterodera daverti from H. trifolii

  • Nicola Vovlas
  • Alessio Vovlas
  • Paola Leonetti
  • Gracia Liébanas
  • Pablo Castillo
  • Sergei A. Subbotin
  • Juan E. Palomares Rius
Article

Abstract

This research carried out an accurate identification of the root-knot and cyst-forming nematode species parasitizing white clover at the Laceno Lake area in Southern Italy. Two species, the root-knot nematode Meloidogyne hapla and the cyst nematode Heterodera daverti were identified by integrative taxonomic approaches (classical, isozyme pattern, and D2-D3 expansion segments of 28S rRNA, ITS rRNA and coxI of mtDNA gene sequences) and found parasitizing white clover roots. These nematodes were detected in stunted plants with a reduced number of rhizobium nodules and the host suitability was confirmed by the high nematode population densities ranging from 53 to 2350 eggs and J2s per g of fresh roots for M. hapla, and 1.36 eggs and J2s/cm3 of soil for H. daverti; and cyst nematode females were also detected on the roots of clover. The studies on the host-parasite relationships of nematode-feeding sites in white clover roots infected by these nematodes showed a high susceptible response. Meloidogyne hapla and H. daverti infections were also observed on nitrogen-fixing root nodules of white clover, where well established feeding sites allowed active nematode reproduction. Histological examination of nitrogen-fixing root nodule tissues revealed that the nematodes established their permanent feeding sites in the vascular bundles of nodules which appeared enlarged deformed and disorganised by the expansion of nematode feeding cells (giant cells and syncytium) and hyperplasia of the nodule cortex. Additionally, coxI of mtDNA gene is an efficient barcoding sequence for discriminating the identification of H. daverti from H. trifolii.

Keywords

Clover pasture coxI gene Endoparasitism Heterodera daverti Histopathology Italy Meloidogyne hapla Molecular phylogeny Morphology Nitrogen fixation losses rRNA gene 

References

  1. Abolafia, J., Liébanas, G., & Peña-Santiago, R. (2002). Nematodes of the order rhabditida from andalucia Oriental, Spain. The subgenus Pseudacrobeles Steiner, 1938, with description of a new species. Journal of Nematode Morphology and Systematics, 4, 137–154.Google Scholar
  2. Ambrogioni, L., D’Errico, F. P., & Marinari Palmisano, A. (1986). Observations on a population of cyst forming nematodes from carnation. In F. Lamberti & C. E. Taylor (Eds.), Cyst nematodes (pp. 315–320). New York: Plenum Press.CrossRefGoogle Scholar
  3. Barker, K. (1998). Introduction and synopsis of advancements in nematology. In K. R. Barker, G. A. Pederson, & G. L. Windham (Eds.), Plant nematode interactions (pp. 1–20). Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
  4. Bird, D. M., Opperman, C. H., & Davies, K. G. (2003). Interactions between bacteria and plant-parasitic nematodes: now and then. International Journal for Parasitology, 33, 1269–1276.CrossRefPubMedGoogle Scholar
  5. Blok, V. C. & Powers, T. O. (2009). Biochemical and molecular identification. In R. N. Perry, M. Moens, & J. L. Starr, (Eds.), Root-knot nematodes. CAB International (pp 98–118).Google Scholar
  6. Castillo, P., Vovlas, N., Subbotin, S., & Troccoli, A. (2003). A new root-knot nematode, Meloidogyne baetica n. sp. (Nematoda: Heteroderidae), parasitizing wild olive in Southern Spain. Phytopathology, 93, 1093–1102.CrossRefPubMedGoogle Scholar
  7. Coolen, W. A. (1979). Methods for extraction of Meloidogyne spp. and other nematodes from roots and soil. In F. Lamberti & C. E. Taylor (Eds.), Root-knot nematodes (Meloidogyne species). Systematics, biology and control (pp. 317–329). New York: Academic.Google Scholar
  8. Cuany, A., & Dalmasso, A. (1975). Caractères et spécificité de deux especes biologiques d’Heterodera se développant sur Dianthus caryophyllus. Nematologia Mediterranea, 3, 11–21.Google Scholar
  9. Derycke, S., Remerie, T., Vierstraete, A., Backeljau, T., Vanfleteren, J., Vincx, M., & Moens, T. (2005). Mitochondrial DNA variation and cryptic speciation within the free living marine nematode Pellioditis marina. Marine Ecology Progress Series, 300, 91–103.CrossRefGoogle Scholar
  10. Desaeger, J., Odee, D., Machua, J., & Esitubi, M. (2005). Interactions between Meloidogyne javanica (Treub) chitwood and rhizobia on growth of Sesbania sesban (L.) Merr. Applied Soil Ecology, 29, 252–258.CrossRefGoogle Scholar
  11. Esbenshade, P. R., & Triantaphyllou, A. C. (1985). Use of enzyme phenotypes for identification of Meloidogyne species. Journal of Nematology, 17, 6–20.PubMedCentralPubMedGoogle Scholar
  12. Griffin, G. D., & Rumbaugh, M. D. (1996). Host suitability of twelve leguminosae species to populations of Meloidogyne hapla and M. chitwoodi. Journal of Nematology, 28, 400–405.PubMedCentralPubMedGoogle Scholar
  13. Hague, H. G. M. (1980). Nematodes of legume crops. In R. J. Summerfield & A. H. Bunting (Eds.). Advances in legume science (pp. 199–205). Proceedings International Legume Conference, Kew, England, 31 Jul-4 August 1978, Royal Botanic Gardens, Kew, England.Google Scholar
  14. Hartman, K. M., & Sasser, J. N. (1985). Identification of Meloidogyne species on the basis of differential host assay and perineal-pattern morphology. In: K. R. Barker, C. C. Carter, & J. J. Sasser, (eds). An Advanced Treatise on Meloidogyne (pp. 67–77). Vol. 2, Methodology. North Carolina State University Graphics, Raleigh.Google Scholar
  15. Huelsenbeck, J. P., & Ronquist, F. (2001). MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.CrossRefPubMedGoogle Scholar
  16. Hussey, R. S., & Williamson, V. M. (1997). Physiological and molecular aspects of nematode parasitism. In K. R. Barker, G. A. Pederson, & G. L. Windham (Eds.), Plant and Nematode Interactions (pp. 87–108). Madison: American Society of Agronomy.Google Scholar
  17. Johansen, D. A. (1940). Plant microtechnique. Ney York: McGraw-Hill Book Co. 523 pp.Google Scholar
  18. Karssen, G. (2002). The plant parasitic nematode genus Meloidogyne Göldi, 1892 (Tylenchida) in Europe. Leiden: Brill. 157 pp.Google Scholar
  19. Ledgard, S., Schils, R., Eriksen, J., & Luo, J. (2009). Environmental impacts of grazed clover/grass pasture. Irish journal of Agricultural and food research, 48, 209–226.Google Scholar
  20. Martinuz, A., Schouten, A., & Sikora, R. A. (2013). Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. BioControl, 58, 95–104.CrossRefGoogle Scholar
  21. Mashela, P. W., & Pofu, K. M. (2012). Interactive effects of Meloidogyne incognita race 2, Bradyrhizobium japonicum and crude extracts of Cucumis myriocarpus fruit on Vigna unguiculata. Crop Protection, 42, 124–127.CrossRefGoogle Scholar
  22. Massoud, S. I., Rahman, F. H. A., & Ghorab, A. I. (1988). Parasitism of Heterodera daverti on clover root rhizobium nodules in Egypt. Egypt Journal of Phytopathology, 20, 73–78.Google Scholar
  23. McLeish, L. J., Berg, G. N., Hinch, J. M., Nambiar, L. V., & Norton, M. R. (1997). Plant parasitic nematodes in white clover and soil from white clover pastures in Australia. Australian Journal of Experimental Agriculture, 37, 75–82.CrossRefGoogle Scholar
  24. Mercer, C. F. (1994). Plant parasitic nematodes in New Zealand. New Zealand Journal of Zoology, 21, 57–65.CrossRefGoogle Scholar
  25. Mercer, C. F., Husain, S. W., & Moore, K. K. (2004). Resistance reactions to Meloidogyne trifoliophila in Trifolium repens and T. semipillosum. Journal of Nematology, 36, 499–504.PubMedCentralPubMedGoogle Scholar
  26. Mulvey, R. H. (1958). Parthenogenesis in a cyst-forming nematode, Heterodera trifolii (Nematoda: Heteroderidae). Canadian Journal of Zoology, 36, 91–93.CrossRefGoogle Scholar
  27. Nordmeyer, D., & Sikora, R. (1983). Studies on the interaction between Heterodera daverti, Fusarium avenaceum and F. oxysporum on Trifolium subterraneum. Revue de Nematologie, 6, 193–198.Google Scholar
  28. Nordmeyer, D., Sikora, R. A., & Jaritz, G. (1978). Die Bedeuting von Nematoden und bodenbürtigen Pilzen als Schaderreger in Trifolium subterraneum-Weiden in Nordwest-Tunesien. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Ghent, 43, 747–756.Google Scholar
  29. Nunn, G. B. (1992). Nematode molecular evolution. Ph.D. Thesis, University of Nottingham, Nottingham, UK.Google Scholar
  30. Pederson, G. A., Windham, G. L., Ellsbury, M. M., McLaughlin, M. R., Pratt, R. G., & Brink, G. E. (1991). White clover yield and persistence as influenced by cypermethrin, bonomyl, and root-knot nematode. Crop Science, 31, 1297–1302.CrossRefGoogle Scholar
  31. Ravichandra, N. G. (2014). Horticultural Nematology. New Dehli: Springer. 412 pp.CrossRefGoogle Scholar
  32. Seinhorst, J. W. (1966). Killing nematodes for taxonomic study with hot f.a. 4:1. Nematologica, 12, 178.CrossRefGoogle Scholar
  33. Siddiqui, Z. A., Fatima, M., & Alam, S. (2011). Interactions of Meloidogyne incognita, Xanthomonas campestris, and Rhizobium sp. in the disease complex of chickpea. Turkish Journal of Agriculture and Forestry, 37, 173–178.Google Scholar
  34. Stelter, H., & Meinl, G. (1972). The effects of the infestation of red and white clover by Heterodera trifolii and Heterodera galeopsidis. Archiv für Pflanzenschutz, 8, 463–470.CrossRefGoogle Scholar
  35. Subbotin, S. A., Vierstraete, A., De Ley, P., Rower, J., Waeyenberge, L., Moens, M., & Vanfleteren, J. R. (2001). Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Molecular Phylogenetics and Evolution, 21, 1–16.CrossRefPubMedGoogle Scholar
  36. Subbotin, S. A., Mundo-Ocampo, M., & Baldwin, J. G. (2010). In D. J. Hunt & R. N. Perry (Eds.), Systematics of cyst nematodes (Nematoda: Heteroderinae). Nematology monographs and perspectives 8B. Leiden: Brill. 512 pp.Google Scholar
  37. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Toumi, F., Waeyenberge, L., Viaenne, N., Dababat, A., Nicol, J. M., Ogbonnaya, F., & Moens, M. (2013). Development of a species-specific PCR to detect the cereal cyst nematode, Heterodera latipons. Nematology, 15, 709–717.Google Scholar
  39. Townshend, J. L., & Potter, J. W. (1978). Yield losses among forage legumes infected with Meloidogyne hapla. Canadian Journal of Plant Science, 58, 939–943.CrossRefGoogle Scholar
  40. Vovlas, N., Castillo, P., & Troccoli, A. (1998). Histology of nodular tissue of three leguminous hosts infected by three root-knot nematode species. International Journal of Nematology, 8, 105–110.Google Scholar
  41. Watson, R. N., & Mercer, C. F. (2000). Pasture nematodes: the major scourge of white clover. Proceedings of the New Zealand Association, 62, 195–199.Google Scholar
  42. Williams, K. J. O. (1974). Meloidogyne hapla. Chitwood, 1949. C.I.H. descriptions of plant-parasitic nematodes 1974, set 3, 4 pp.Google Scholar
  43. Williams, W. M. (1987). White clover taxonomy and biosystematics. In M. J. Baker & W. M. Williams (Eds.), White clover (pp. 323–342). Wallingford: CAB International.Google Scholar
  44. Wouts, W. M. (1978). On the males of Heterodera trifolii Goffart, 1932 (Nematoda: Heteroderidae). Nematologica, 24, 15–120.Google Scholar
  45. Wouts, W. M., & Sturhan, D. (1978). The identity of Heterodera trifolii Coffart, 1962 and the description of H. daverti n. sp. (Nematoda, Tylenchida). Nematologica, 24, 121–128.CrossRefGoogle Scholar
  46. Yeates, G. W., Ross, D. J., Bridger, B. A., & Visser, T. A. (1977). Influence of the nematodes Heterodera trifolii and Meloidogyne hapla on nitrogen fixation by white clover under glasshouse conditions. New Zealand Journal of Agricultural Research, 20, 401–413.CrossRefGoogle Scholar
  47. Zahid, M. I., Gurr, G. M., Nikandrow, A., Hodda, M., Fulkerson, W. J., & Nicol, H. I. (2001). Survey of fungi and nematodes associated with root and stolon diseases of white clover in the subtropical dairy region of Australia. Australian Journal of Experimental Agriculture, 41, 1133–1142.CrossRefGoogle Scholar
  48. Zijlstra, C. (2000). Identification of Meloidogyne chitwoodi, M. fallax and M. hapla based on SCAR-PCR: a powerful way of enabling reliable identification of populations or individuals that share common traits. European Journal of Plant Pathology, 106, 283–290.CrossRefGoogle Scholar
  49. Zijlstra, C., Donkers-Venne, D. T. H. M., & Fargette, M. (2000). Identication of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology, 8, 847–853.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Nicola Vovlas
    • 1
  • Alessio Vovlas
    • 2
  • Paola Leonetti
    • 1
  • Gracia Liébanas
    • 3
  • Pablo Castillo
    • 4
  • Sergei A. Subbotin
    • 5
    • 6
  • Juan E. Palomares Rius
    • 4
  1. 1.Istituto per la Protezione Sostenibile delle Piante (IPSP)Consiglio Nazionale delle Ricerche (CNR), U.O.S. di BariBariItaly
  2. 2.A. P. S. PolyxenaConversanoItaly
  3. 3.Departamento de Biología Animal, B. Vegetal y EcologíaUniversidad de JaénJaénSpain
  4. 4.Instituto de Agricultura Sostenible (IAS)Consejo Superior de Investigaciones Científicas (CSIC)CórdobaSpain
  5. 5.Plant Pest Diagnostic CenterCalifornia Department of Food and AgricultureSacramentoUSA
  6. 6.Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of SciencesMoscowRussia

Personalised recommendations