European Journal of Plant Pathology

, Volume 143, Issue 4, pp 813–821 | Cite as

Genetic transformation of sweet passion fruit (Passiflora alata) and reactions of the transgenic plants to Cowpea aphid borne mosaic virus

  • Marcelo Favareto Correa
  • Ana Paula Chiaverini Pinto
  • Jorge Alberto Marques Rezende
  • Ricardo Harakava
  • Beatriz Madalena Januzzi Mendes
Article

Abstract

Passion fruit woodiness disease, which is caused by the potyvirus Cowpea aphid borne mosaic virus (CABMV), is the primary constraint for passion fruit production in Brazil. Transgenic Passiflora alata lines that contain a CABMV-derived coat protein gene fragment in a hairpin configuration were obtained via Agrobacterium tumefaciens-mediated transformation. The plants were propagated and the reaction to CABMV infection was evaluated after three mechanical and one viruliferous vector inoculations. After three mechanical inoculations, two lines from a total of 21 transgenic lines tested maintained all four propagated clones symptomless. After the fourth inoculation, all transgenic lines presented at least one propagated clone infected with CABMV. However, 20 propagated clones from different transgenic lines remained asymptomatic. These asymptomatic plants were analyzed by RT-PCR and CABMV was detected in 17 plants. The estimated viral titers in these plants, which were determined by RT-qPCR, were consistently low compared with those of the positive control (non-transgenic inoculated plants). A biological virus recovery test was performed using leaf extracts from the three RT-PCR negative propagated clones and the absence of the CABMV was confirmed. The results of the present study indicate that the incorporation of CABMV-gene fragments into the Passiflora genome may influence the resistance of these plants to the pathogen.

Keywords

Passion fruit woodiness disease Pathogen derived resistance Potyvirus Sweet passion fruit 

Supplementary material

10658_2015_733_MOESM1_ESM.jpg (1.6 mb)
ESM 1(JPEG 1635 kb)
10658_2015_733_MOESM2_ESM.docx (16 kb)
ESM 2(DOCX 16 kb)

References

  1. AGRIANUAL. (2015). Anuário da Agricultura Brasileira (p. 344). São Paulo: Instituto AgraFNP.Google Scholar
  2. Borse, T., Joshi, P., & Chaphalkar, S. (2011). Biochemical role of ascorbic acid during the extraction of nucleic acids in polyphenol rich medicinal plant tissues. Journal of Plant Molecular Biology and Biotechnology, 2, 1–7.Google Scholar
  3. Fagoaga, C., López, C., Mendoza, A. H., Moreno, P., Navarro, L., Flores, R., & Peña, L. (2006). Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Molecular Biology, 60, 153–165.CrossRefPubMedGoogle Scholar
  4. Febres, V. J., Niblett, C. L., Lee, R. F., & Moore, G. A. (2003). Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Reports, 21, 421–428.PubMedGoogle Scholar
  5. Febres, V. J., Lee, R. F., & Moore, G. A. (2008). Transgenic resistance to Citrus tristeza virus in grapefruit. Plant Cell Reports, 27, 93–104.CrossRefPubMedGoogle Scholar
  6. Fischer, I. H., & Rezende, J. A. M. (2008). Diseases of passion flower (Passiflora spp). Pest Technology, 2, 1–19.Google Scholar
  7. Gambino, G., & Gribaudo, I. (2012). Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Research, 21, 1163–1181.CrossRefPubMedGoogle Scholar
  8. Gonsalves, D. (1998). Control of papaya ringspot virus in papaya: a case study. Annual Review of Phytopathology, 36, 415–437.CrossRefPubMedGoogle Scholar
  9. Hily, J. M., Ravelonandro, M., Damsteegt, V., Bassett, C., Petri, C., Liu, Z., & Scorza, R. (2007). Plum pox virus coat protein gene intron-hairpin-RNA (ihpRNA) constructs provide resistance to Plum pox virus in Nicotiana benthamiana and Prunus domestica. Journal of the American Society for Horticultural Science, 132, 850–858.Google Scholar
  10. Monteiro-Hara, A. C. B. A. (2010). Transformação genética de maracujazeiro azedo para resistência ao vírus do endurecimento dos frutos (Cowpea aphid borne mosaic virus). Thesis. Universidade de São Paulo - Centro de Energia Nuclear na Agricultura. http://www.teses.usp.br/teses/disponíveis/64/64133/tde-09062020-11935/publico/Doutorado.pdf. Accessed 20 November 2014.
  11. Monteiro-Hara, A. C. B. A., Jadão, A. S., Mendes, B. M. J., Rezende, J. A. M., Trevisan, F., Mello, A. P. O. A., Vieira, M. L. C., Meletti, L. M. M., & Piedade, S. M. S. (2011). Genetic transformation of passionflower and evaluation of R1 and R2 generations for resistance to Cowpea aphid borne mosaic virus. Plant Disease, 95, 1021–1025.CrossRefGoogle Scholar
  12. Muniz, F. R., Souza, A., Harakava, R., Mourão Filho, F. A. A., Stach-Machado, D., Rezende, J. A. M., Febres, V. J., Moore, G. A., & Mendes, B. M. J. (2014). Reaction of transgenic Citrus sinensis plants to Citrus tristeza virus infection by Toxoptera citricida. European Journal of Plant Pathology, 139, 151–159.CrossRefGoogle Scholar
  13. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  14. Nutter, F. W., Jr. (2007). The role of plant disease epidemiology in developing successful integrated disease management programs. In A. Ciancio & K. G. Mukerji (Eds.), General concepts in integrated pest and disease management (pp. 45–79). Dordrecht: Springer.CrossRefGoogle Scholar
  15. Pattanayak, D., Solanke, A. U., & Kumar, O. A. (2013). Plant RNA interference pathways: diversity in function, similarity in action. Plant Molecular Biology Reporter, 31, 493–506.CrossRefGoogle Scholar
  16. Pinto, A. P. C., Monteiro-Hara, A. C. B. A., Stipp, L. C. L., & Mendes, B. M. J. (2010). In vitro organogenesis of Passiflora alata. In Vitro Cellular and Developmental Biology - Plant, 46, 28–33.CrossRefGoogle Scholar
  17. Sanford, J. C., & Johnston, S. A. (1985). The concept of parasite-derived resistance - Deriving resistance genes from the parasites own genome. Journal of Theoretical Biology, 113, 395–405.CrossRefGoogle Scholar
  18. Scorza, R., Levy, L., Damsteegt, V., Yepes, L. M., Cordts, J., Hadidi, A., Slightom, J., & Gonsalves, D. (1995). Transformation of plum with the Papaya ringspot virus coat protein gene and reaction of transgenic plants to Plum pox virus. Journal of the American Society for Horticultural Science, 120, 943–952.Google Scholar
  19. Scorza, R., Callahan, A., Levy, L., Damsteegt, V., Webb, K., & Ravelonandro, M. (2001). Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Research, 10, 201–209.CrossRefPubMedGoogle Scholar
  20. Scorza, R., Callahan, A., Dardick, C., Ravelonandro, M., Polak, J., Malinowski, T., Zagrai, I., Cambra, M., & Kamenova, I. (2013). Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum-from concept to product. Plant Cell Tissue and Organ Culture, 115, 1–12.CrossRefGoogle Scholar
  21. Steinlage, T. A., Hill, J. H., & Nutter, F. W., Jr. (2002). Temporal and spatial spread of Soybean mosaic virus (SMV) in soybeans transformed with the coat protein gene of SMV. Phytopathology, 92, 478–486.CrossRefPubMedGoogle Scholar
  22. Trevisan, F., Mendes, B. M. J., Maciel, S. C., Vieira, M. L. C., Meletti, L. M. M., & Rezende, J. A. M. (2006). Resistance to Passion fruit woodiness virus in transgenic passionflower expressing the virus coat protein gene. Plant Disease, 90, 1026–1030.Google Scholar
  23. Waterhouse, P. M., Wang, M. B., & Lough, T. (2001). Gene silencing as an adaptive defence against viruses. Nature, 411, 834–842.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Marcelo Favareto Correa
    • 1
  • Ana Paula Chiaverini Pinto
    • 1
  • Jorge Alberto Marques Rezende
    • 2
  • Ricardo Harakava
    • 3
  • Beatriz Madalena Januzzi Mendes
    • 1
  1. 1.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil
  2. 2.Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil
  3. 3.Instituto Biológico de São PauloSão PauloBrazil

Personalised recommendations