European Journal of Plant Pathology

, Volume 143, Issue 4, pp 801–811 | Cite as

Phenotypic and genotypic diversity of Pectobacterium carotovorum subsp carotovorum causing soft rot disease of potatoes in Morocco

  • Hind Faquihi
  • Meriam Terta
  • Mohamed Amdan
  • El Hassan Achbani
  • M. Mustapha Ennaji
  • Rajaa Ait Mhand
Article

Abstract

The species Pectobacterium carotovorum include a diverse subspecies of bacteria that cause disease on a wide variety of plants. In Morocco, approximately 95 % of the P. carotovorum isolates from potato plants with tuber soft rot are P. carotovorum subsp carotovorum. The aim was to monitor this Moroccan population in time and to continue the work carried out to understand the genetic diversity of these subspecies. The diversity of 30 strains of P. carotovorum subsp carotovorum collected between 2012 and 2013 from potato soft rot from different Moroccan regions was evaluated. On the basis of phenotypic characteristics, the isolates were classified into four different biovars and in three groups based on the aggressiveness traits. Moreover, the genetic variability was also investigated by fingerprint analysis. The typing by ERIC and REP sequences of the new collection compared to ERIC-PCR and phylogenetic analysis of pmrA sequences, demonstrated that there is a considerable genetic diversity in P. carotovorum subsp. carotovorum strains, which can be divided into two distinct groups, independently to their source of isolation, by their pathogenicity.

Keywords

Soft rot potato Pectobacterium carotovorum subsp carotovorum rep-PCR Biochemical characteristics Pathogenicity Genetic diversity 

References

  1. Achbani, E., Maazouz, H., & Boulif, M. (1993). Inventaire et importance des maladies fongiques et bactériennes de la pomme de terre dans la région de Meknès. Al AWAMIA, 80, 82–83.Google Scholar
  2. Anajjar, B., Ait M’hand, R., Timinouni, M., & Ennaji, M. (2007). Caractérisation par PCR de deux souches d’Erwinia carotovora isolées de la rhizosphère de la pomme de terre dans la région du grand Casablanca au Maroc. EPPO Bull, 37, 175–180.CrossRefGoogle Scholar
  3. Anita, N. S., Andreas, R., & Harald, H. (2005). Specificity of enterobacterial repetitive intergenic consensus and repetitive extragenic palindromic polymerase chain reaction for the detection of clonality within the Enterobacter cloacae complex. Diagnostic Microbiology and Infectious Disease, 53, 9–16.CrossRefGoogle Scholar
  4. Barras, F., van Gijsegem, F., & Chatterjee, A. K. (1994). Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annual Review of Phytopathology, 32, 201–234.CrossRefGoogle Scholar
  5. Czajkowski, R., Perombelon, M. C. M., van Veen, J. A., & van der Wolf, J. M. (2011). Control of blackleg and tuber soft rot of potato caused by Pectobacteriumand Dickeya species. Plant Pathology, 60, 999–1013.CrossRefGoogle Scholar
  6. Czajkowski, R., de Boer, W. J., van Veen, J. A., & van der Wolf, J. M. (2012). Characterization of bacterial isolates from rotting potato tuber tissue showing antagonism to Dickeya sp. biovar 3 in vitro and in planta. Plant Pathology, 61, 169–182.CrossRefGoogle Scholar
  7. Darrasse, A., Kotoujansky, A., & Bertheau, Y. (1994). Isolation by genomic subtraction of DNA probes specific for Erwinia carotovora subsp. atroseptica. Applied and Environmental Microbiology, 60, 298–306.PubMedCentralPubMedGoogle Scholar
  8. De Boer, S. H. (2003). Characterization of pectolytic Erwinias as highly sophisticated pathogens of plants. European Journal of Plant Pathology, 109, 893–899.CrossRefGoogle Scholar
  9. Dye, D. W. (1969). A taxonomic study of the genus Erwinia. II. The “carotovora” group. New Zealand Journal of Science, 12, 81–97.Google Scholar
  10. Frank, J. L., Dennis, W. F., Christine, T. S., & Frans, J. B. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequencesand PCR. Applied and Environmental Microbiology, 60(7), 2286–2295.Google Scholar
  11. Gallelli, A., Galli, M., De Simone, D., Zaccardelli, M., & Loreti, S. (2009). Phenotypic and genetic variability of Pectobacterium carotovorum isolated from artichoke in the Sele valley. Journal of Plant Pathology, 91, 757–761.Google Scholar
  12. Garcia-Vallve, S., Palau, J., & Romeu, A. (1999). Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Molecular Biology and Evolution, 9, 1125–1134.CrossRefGoogle Scholar
  13. Gardan, L., Gouy, C., Christen, R., & Samson, R. (2003). Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53, 381–391.CrossRefPubMedGoogle Scholar
  14. Kaewnum, S., Prathuangwong, S., & Burr, T. J. (2006). A Pectate Lyase Homolog, xagP, in Xanthomonas axonopodis pv. glycines is associated with hypersensitive response induction on tobacco. Phytopathology, 96, 1230–1236.CrossRefPubMedGoogle Scholar
  15. Kang, H. W., Kwon, S. W., & Go, S. J. (2003). PCR-based specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum by primers generated from a URP-PCR fingerprinting-derived polymorphic band. Plant Pathology, 52, 127. doi:10.1046/j.1365-3059.2003.00822.x.CrossRefGoogle Scholar
  16. Kettani-Halabi, M., Terta, M., Amdan, M., Elfahime, E., Bouteau, F., & Ennaji, M. M. (2013). An easy, simple inexpensive test for the specific detection of Pectobacterium carotovorum subsp. carotovorum based on sequence analysis of the pmrA gene. BMC Microbiology, 13, 176.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Li, X., & De Boer, S. H. (1995). Selection of Polymerase Chain Reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp sepedonicus. Phytopathology, 85, 837–842.CrossRefGoogle Scholar
  18. Lojkowska, E., & Kelman, A. (1994). Comparison of the effectiveness of different methods of Screening for bacterial soft rot resistance of potato tubers. American Potato Journal, 71, 99–112.CrossRefGoogle Scholar
  19. Ma, B., Hibbing, M. E., Kim, H. S., Reedy, R. M., Yedidia, I., Breuer, J., Glasner, J. D., Perna, N. T., et al. (2007). Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology, 97, 1150–1163.CrossRefPubMedGoogle Scholar
  20. Muiru, W. M., Koopmann, B., Tiedemann, A. V., Mutitu, E. W., & Kimenju, J. W. (2010). Use of Repetitive Extragenic Palindromic (REP), Enterobacterial Repetitive Intergenic Consensus (ERIC) and BOX sequences to fingerprint Exserohilum turcicum isolates. Journal of Applied Biosciences, 30, 1828–1338.Google Scholar
  21. Perombelon, M. C. M. (2002). Potato diseases caused by soft rot Erwinias: an overview of pathogenesis. Plant Pathology, 51, 1–12.CrossRefGoogle Scholar
  22. Perombelon, M. C. M., & Kelman, A. (1980). Ecology of the soft rot Erwinias. Annual Review of Phytopathology, 18, 361–387.CrossRefGoogle Scholar
  23. Pitman, A. R., Wright, P. J., Galbraith, M. D., & Harrow, S. A. (2008). Biochemical and genetic diversity of pectolytic enterobacteria causing soft rot disease of potatoes in New Zealand. Australasian Plant Pathology, 37, 559–568.CrossRefGoogle Scholar
  24. Priscilla, E. D., Leeann, K. J., Sara, T. Z., & Michael, J. S. (2000). Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Applied and Environmental Microbiology, 66(6), 2572–2577.CrossRefGoogle Scholar
  25. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York (USA): Cold Spring Harbor Laboratory Press.Google Scholar
  26. Samson, R., Legendre, J. B., Christen, R., Fischer-Le Saux, M., Achouak, W., & Gardan, L. (2005). Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 55, 1415–1427.CrossRefPubMedGoogle Scholar
  27. Seo, S. T., Furuya, N., Lim, C. K., Takanami, Y., & Tsuchiya, K. (2002). Phenotypic and genetic diversity of Erwinia carotovora ssp. carotovora strains from Asia. Journal of Phytopathology, 150, 120–127.CrossRefGoogle Scholar
  28. Starr, M. P., & Chatterjee, A. K. (1972). The genus Erwinia: enterobacteria pathogenic to plants and animals. Annual Review of Microbiology, 26, 389–426.CrossRefPubMedGoogle Scholar
  29. Terta, M., El Karkouri, A., Ait M'hand, R., Achbani, E., Barakate, M., Amdan, M., Annajar, B., Ennaji, M. M., et al. (2010). Occurrence of Pectobacterium carotovorum Strains isolated from potato soft rot in Morocco. Cellular and Molecular Biology, 56, 1324–1333.Google Scholar
  30. Terta, M., Azelmat, S., Ait M’hand, R., Achbani, E., Barakate, M., Bouteau, F., & Ennaji, M. M. (2012). Molecular typing of Pectobacterium carotovorum isolated from potato tuber soft rot in Morocco. Annals of Microbiology, 7, 1–7.Google Scholar
  31. Toth, I. K., van der Wolf, J. M., Saddler, G., Lojkowska, E., Hélias, V., Pirhonen, M., Tsror, L., & Elphinstone, J. G. (2011). Dickeya species: an emerging problem for potato production in Europe. Plant Pathology, 60, 385–399.CrossRefGoogle Scholar
  32. Versalovic, J., Koueth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 19, 6823–6831.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Vimal, B. M., & Anuradha, S. N. (2013). Characterization and differentiation of soft rot causing Pectobacterium carotovorum of Indian origin. European Journal of Plant Pathology, 136, 87–102.CrossRefGoogle Scholar
  34. Vitale, S., Alberino, S., Zoina, A., Parisi, B., & Corazza, L. (2004). Evaluation of resistance to dry and soft rot of potato clones adapted to Mediterranean regions. Phytopathologia Polonica, 34, 13–20.Google Scholar
  35. Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531–6535.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Yahiaoui-Zaidi, R., Jouan, B., & Andrivon, D. (2003). Biochemical and molecular diversity among Erwinia isolates from potato in Algeria. Plant Pathology, 52, 28–40.CrossRefGoogle Scholar
  37. Yap, M. N., Barak, J. D., & Charkowski, A. O. (2004). Genomic diversity of Erwinia carotovora subsp. carotovora and its correlation with virulence. Applied and Environmental Microbiology, 70, 3013–3023.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Zulkifli, Y., Alitheen, N. B., Son, R., Raha, A. R., Samuel, L., Yeap, S. K., & Nishibuchi, M. (2009). Random amplified polymorphic DNA-PCR and ERIC-PCR analysis on Vibrio parahaemolyticus isolated from cockles in Padang, Indonesia. Food Research International Journal, 16, 141–150.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Hind Faquihi
    • 1
    • 2
  • Meriam Terta
    • 1
  • Mohamed Amdan
    • 1
  • El Hassan Achbani
    • 2
  • M. Mustapha Ennaji
    • 1
  • Rajaa Ait Mhand
    • 1
  1. 1.Laboratory of Virology, Microbiology and Quality / Ecotoxicology and BiodiversityUniversity Hassan II Mohammedia-FSTM-MoroccoMohammediaMorocco
  2. 2.Laboratory of Phytobacteriology and BiocontrolResearch National Institute of AgronomicMeknesMorocco

Personalised recommendations