European Journal of Plant Pathology

, Volume 143, Issue 4, pp 779–787 | Cite as

Simultaneous detection of Clavibacter michiganensis subsp. michiganensis, Pepino mosaic virus and Mexican papita viroid by non-radioactive molecular hybridization using a unique polyprobe

  • Erika Janet Zamora-Macorra
  • Daniel Leobardo Ochoa-Martínez
  • Guadalupe Valdovinos-Ponce
  • Reyna Rojas-Martínez
  • Sergio Ramírez-Rojas
  • Jesús Ángel Sánchez-Navarro
  • Vicente Pallás
  • Frederic AparicioEmail author


Clavibacter michiganensis subsp. michiganensis, Pepino mosaic virus, and Mexican papita viroid are three economically important pathogens that infect tomato crops. In this work, a polyprobe (poly-3) was developed and evaluated for the simultaneous detection of these pathogens in tomato plants by non-isotopic molecular hybridization. The endpoint detection limit of the poly-3 with C. michiganensis subsp. michiganensis cell cultures was 106 CFU/ml. No differences were found in terms of the sensitivity and specificity when the individual riboprobes were compared to the poly-3 for the detection of the three pathogens. The analysis of 80 tomato field samples by the poly-3 and RT-PCR techniques rendered the same number of positive samples for each pathogen. As far as we know this is the first time that three pathogens with very different life cycle styles (bacteria, virus and viroid) are simultaneously detected in a single assay. The possibility of using this poly-3 technology for the routine diagnosis of field tomato samples is discussed.


Tomato Clavibacter michiganensis subsp. michiganensis Pepino mosaic virus Mexican papita viroid Polyriboprobe Non-isotopic molecular hybridization 



E.J M-Z. was recipient of a Pre-doctoral fellowship from the Consejo Nacional de Ciencia y Tecnología of Mexico. F.A. was recipient of a contract Ramón y Cajal (RYC-2010-06169) Program of the Ministerio de Educación y Ciencia of Spain. We thank L. Corachan for her excellent technical assistance. This work was supported by Grants BIO2014-54862-R from the Spanish Granting Agency DGICYT, the Prometeo Program GV2011/003 from the Generalitat Valenciana and PAID-06-10-1496 from the Universitat Politecnica de Valencia (Spain).


  1. Anonymous. Council Directive 2000/29/EC of 8 May 2000 on protective measures against the introduction into the Community of organisms harmful to plants or plant products and against their spread within the Community. Office for Official Publications of the European Communities. Consolidated Text, pages 1–159.
  2. Aparicio, F., Soler, S., Aramburu, J., Galipienso, L., Nuez, F., Pallás, V., & López, C. (2009). Simultaneous detection of six RNA plant viruses affecting tomato crops using a single digoxigenin-labelled polyprobe. European Journal of Plant Pathology, 123, 117–123.CrossRefGoogle Scholar
  3. Astruc, N., Marcos, J. F., Macquaire, G., Candresse, T., & Pallás, V. (1996). Studies on the diagnosis of hop stunt viroid in fruit trees: identification of new hosts and application of a nucleic acid extraction procedure based on non-organic solvents. European Journal of Plant Pathology, 102, 837–846.CrossRefGoogle Scholar
  4. Bach, H. J., Jessen, I., Schloter, M., & Munch, J. C. (2003). A TaqMan-PCR protocol for quantification and differentiation of the phytopathogenic Clavibacter michiganensis subspecies. Journal Microbiological Methods, 52, 85–89.CrossRefGoogle Scholar
  5. Chalupowicz, L., Cohen-Kandli, M., Dror, O., Eichenlaub, R., Gartemann, K.-H., Sessa, G., Barash, I., & Manulis-Sasson, S. (2010). Sequential expression of bacterial virulence and plant defense genes during infection of tomato with Clavibacter michiganensis subsp. michiganensis. Phytopathology, 100, 252–261.CrossRefPubMedGoogle Scholar
  6. Cohen, O., Batuman, O., Stanbekova, G., Sano, T., Mawassi, M., & Bar-Joseph, M. (2006). Construction of a multiprobe for the simultaneous detection of viroids infecting citrus trees. Virus Genes, 33, 287–292.PubMedGoogle Scholar
  7. Córdoba-Sellės, M. C., Garcîa-Rández, A., Alfaro-Fernández, A., & Jordó-Gutiérrez, C. (2007). Seed transmission of Pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Disease, 91, 1250–1254.CrossRefGoogle Scholar
  8. De León, L., Rodríguez, A., López, M. M., & Siverio, F. (2008). Evaluation of the efficacy of immunomagnetic separation for the detection of Clavibacter michiganensis subsp. michiganensis in tomato seeds. Journal Applied Microbiology, 104, 776–786.CrossRefGoogle Scholar
  9. De León, L., Siverio, F., López, M. M., & Rodríguez, A. (2011). Clavibacter mchiganensis subsp. michiganensis, a seedborne tomato pathogen: healthy seed are still the goal. Plant Disease, 95, 1328–1338.CrossRefGoogle Scholar
  10. Dessaux, Y., Elasri, M., Glickmann, E., Oger, P., Petit, A., & Vaudequin-Dransart, V. (1995). The use of digoxigenin-labelled probes to detect DNA sequences specific for plant pathogenic bacteria. Cellular and Molecular Biology, 41, 933–943.PubMedGoogle Scholar
  11. Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., Sano, T., Vidalakis, G., & Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159, 3467–3478.CrossRefPubMedGoogle Scholar
  12. Dreier, J., Bermpohl, A., & Eichenlaub, R. (1995). Southern hybridization and PCR for specific detection of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Phytopathology, 85, 462–468.CrossRefGoogle Scholar
  13. Fajardo, T. V. M., & Nickel, O. (2014). Simultaneous detection of four viruses affecting apple and pear by molecular hybridization using a polyprobe. Ciencia Rural, 44, 1711–1714.CrossRefGoogle Scholar
  14. Fanelli, V., Cariddi, C., & Finetti-Sialer, M. (2007). Selective detection of Pseudomonas syringae pv. Tomato using dot blot hybridization and real-time PCR. Plant Pathology, 56, 683–691.CrossRefGoogle Scholar
  15. Herranz, M. C., Sanchez-Navarro, J. A., Aparicio, F., & Pallás, V. (2005). Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or ‘polyprobe’. Journal of Virological Methods, 124, 49–55.CrossRefPubMedGoogle Scholar
  16. Ivars, P., Alonso, M., Borja, M., & Hernandez, C. (2004). Development of a non-radioactive dot-blot hybridisation assay for the detection of Pelargonium flower break virus and Pelargonium line pattern virus. Eurpean Journal of Plant Patholology, 110, 275–283.CrossRefGoogle Scholar
  17. James, D., Varga, A., Pallas, V., & Candresse, T. (2010). Strategies for simultaneous detection of multiple plant viruses. Canadian Journal of Plant Pathology, 28, 16–29.CrossRefGoogle Scholar
  18. Johnson, K. L., & Walcott, R. R. (2012). Progress towards a real-time PCR assay for the simultaneous detection of Clavibacter michiganensis subsp. michiganensis and Pepino mosaic virus in tomato seed. Journal of Phytopathology, 160, 353–363.CrossRefGoogle Scholar
  19. Jones, R. A. C., Koenig, R., & Lesemann, D. E. (1980). Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Annals of Applied Biology, 94, 61–68.CrossRefGoogle Scholar
  20. Jorda, C., Pérez, A. L., Martıínez-Culebras, P., & Lacasa, A. (2001). First report of Pepino mosaic virus on natural hosts. Plant Disease, 85, 1292.Google Scholar
  21. Kokosková, B., Mráz, I., & Fousek, J. (2010). Comparison of specificity and sensitivity of immunochemical and molecular techniques for determination of Clavibacter michiganensis subsp. michiganensis. Folia Microbiology, 55, 239–244.CrossRefGoogle Scholar
  22. Lin, L., Li, R., Mock, R., & Kinard, G. (2011). Development of a polyprobe to detect six viroids of pome and stone fruit trees. Journal of Virological Methods, 171, 91–97.CrossRefPubMedGoogle Scholar
  23. Ling, K. S. (2008). Pepino mosaic virus on tomato seed: virus location and mechanical transmission. Plant Disease, 92, 1701–1705.CrossRefGoogle Scholar
  24. Ling, K. & Carpenter, L. (2005). Pepino mosaic virus, an emerging disease in tomato greenhouse production worldwide; is seed responsible? Proc 1 sr IC on tomato diseases. In M.T. Momal, P. Ji and J.B. Jones (Eds.), Acta Horticultura 695.Google Scholar
  25. Ling, K.-S., & Zhang, W. (2009). First report of a natural infection by Mexican Papita Viroid and Tomato Chlorotic Dwarf Viroid on greenhouse tomatoes in Mexico. Plant Disease, 93, 1216.CrossRefGoogle Scholar
  26. Luo, L. X., Walters, C., Bolkan, H., Liu, X. L., & Li, J. Q. (2008). Quantification of viable cells of Clavibacter michiganensis subsp. Michiganensis using a DNA binding dye and a real-time PCR assay. Plant Pathology, 57, 332–337.CrossRefGoogle Scholar
  27. Meletzus, D., Bermpohl, A., Dreier, J., & Eichenlaub, R. (1993). Evidence for plasmid-encoded virulence factors in the phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382. Journal of Bacteriology, 175, 2131–2136.PubMedCentralPubMedGoogle Scholar
  28. Minutillo, S. A., Mascia, T., & Gallitelli, D. (2012). A DNA probe mix for the multiplex detection of ten artichoke viruses. European Journal of Plant Pathology, 134, 459–465.CrossRefGoogle Scholar
  29. OEPP/EPPO. (2005). EPPO Standards PM 7/42 (1) diagnostic. Clavibacter michiganensis subsp. michiganensis. Bulletin OEPP-EPPO Bulletin, 35, 275–283.CrossRefGoogle Scholar
  30. Olivier, V., Baloche, A., Drouin, A., Audusseau, C., Paillard, S., & Soubelet, H. (2010). Internal methods comparison study and inter-laboratory study on Clavibacter michiganensis subsp. michiganensis in tomato seeds. Bulletin OEPP/EPPO Bulletin, 40, 248–256.CrossRefGoogle Scholar
  31. Özdemir, Z. (2009). Development of a multiplex PCR assay for the simultaneous detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and Xanthomonas axonopodis pv. Vesicatoria using pure cultures. Jouranl of Plant Pathology, 91, 495–497.Google Scholar
  32. Pallás, V., Mas, P., & Sánchez-Navarro, J. A. (1998). Detection of plant RNA viruses by nonisotopic dot-blot hybridization. Methods in Molecular Biology, 81, 461–468.PubMedGoogle Scholar
  33. Pallas, V., Sanchez-Navarro, J. A., Varga, F., Aparicio, F., & James, D. (2009). Multiplex Polymerase Chain Reaction (PCR) and Real-time Multiplex PCR for the simultaneous detection of plant viruses. Methods in Molecular Biology, 508, 193–208.Google Scholar
  34. Peiró, A., Pallás, V., & Sánchez-Navarro, J. A. (2012). Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. European Journal of Plant Pathology, 132, 469–475.CrossRefGoogle Scholar
  35. Saade, M., Aparicio, F., Sanchez-Navarro, J. A., Herranz, M. C., Myrta, A., Di-Terlizzi, B., & Pallás, V. (2000). Simultaneous detection of the three ilarviruses affecting stone fruit trees by nonisotopic molecular hybridisation and multiplex reverse-transcription polymerase chain reaction. Phytopathology, 90, 1330–1336.CrossRefPubMedGoogle Scholar
  36. Saldarelli, P., Barbarossa, L., Grieco, F., & Gallitelli, D. (1996). Digoxigenin-labelled riboprobes applied to phytosanitary certification of tomato in Italy. Plant Disease, 80, 1343–1346.CrossRefGoogle Scholar
  37. Sanchez-Navarro, J. A., Aparicio, F., Rowhani, A., & Pallás, V. (1998). Comparative analysis of ELISA, nonradioactive molecular hybridization and PCR for the detection of prunus necrotic ringspot virus in herbaceous and Prunus hosts. Plant Pathology, 47, 780–786.CrossRefGoogle Scholar
  38. Sanchez-Navarro, J. A., Cañizares, M. C., Cano, E. A., & Pallás, V. (1999). Simultaneous detection of five carnation viruses by non-isotopic molecular hybridization. Journal of Virological Methods, 82, 167–175.CrossRefPubMedGoogle Scholar
  39. Spence, N. J., Basham, J., Mumford, R. A., Hayman, G., Edmondson, R., & Jones, D. R. (2006). Effect of Pepino mosaic virus on the yield and quality of glasshouse-grown tomatoes in the UK. Plant Pathology, 55, 595–606.CrossRefGoogle Scholar
  40. Thompson, J. R., Wetzel, S., Klerks, M. M., Vaskova, D., Schoen, C. D., Spak, J., et al. (2003). Multiplex RT-PCR detection of four aphid-borne strawberry viruses in Fragaria spp. in combination with a plant mRNA specific internal control. Journal of Virological Methods, 111, 85–93.CrossRefPubMedGoogle Scholar
  41. Torchetti, E. M., Navarro, B., & Di Serio, F. (2012). A single polyprobe for detecting simultaneously eight pospiviroids infecting ornamentals and vegetables. Journal of Virological Methods, 186, 141–146.CrossRefPubMedGoogle Scholar
  42. Verhoeven, J. ThJ., Roenhorst, J. W., & Owens, R. A. (2011). Mexican papita viroid and Tomato planta macho viroid belong to a sing le species in the genus Pospiviroid. Archives of Virology, 156, 1433–1437.Google Scholar
  43. Zhang, Z., Peng, S., Dongmei, J., Pan, S., Wang, H., & Li, S. (2012). Development of a polyprobe for the simultaneous detection of four grapevine viroids in grapevine plants. European Journal of Plant Pathology, 132, 9–16.CrossRefGoogle Scholar
  44. Zhao, W. J., Chen, H. Y., Zhu, S. F., Xia, M. X., & Tan, T. W. (2007). One step detection of Clavibacter michiganensis subsp. michiganensis in symptomless tomato seeds using a TaqMan probe. Jouranl of Plant Pathology, 89, 349–351.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Erika Janet Zamora-Macorra
    • 1
  • Daniel Leobardo Ochoa-Martínez
    • 1
  • Guadalupe Valdovinos-Ponce
    • 1
  • Reyna Rojas-Martínez
    • 1
  • Sergio Ramírez-Rojas
    • 2
  • Jesús Ángel Sánchez-Navarro
    • 3
  • Vicente Pallás
    • 3
  • Frederic Aparicio
    • 3
    Email author
  1. 1.Colegio de PostgraduadosTexcocoMéxico
  2. 2.Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias- ZacatepecMorelosMéxico
  3. 3.Instituto de Biología Molecular y Celular de PlantasUniversidad Politécnica de Valencia (UPV-CSIC)ValenciaSpain

Personalised recommendations