European Journal of Plant Pathology

, Volume 143, Issue 4, pp 767–777 | Cite as

Cryphonectria parasitica isolates of the same vegetative compatibility type display different rates of transfer of CHV1 hypovirus

  • P. Zamora
  • A. B. Martín
  • M. Dueñas
  • R. San Martin
  • J. J. Diez
Article

Abstract

Hypovirulent strains of the chestnut blight fungus Cryphonectria parasitica have not been registered in the autonomous region of Castilla y León (Spain), except in the province of León. In this laboratory-based study, we analyzed the rates of horizontal transmission of hypovirus CHV1 subtype F1, isolated from chestnut stands in León. We tested the conversion capacity of the six vegetative compatibility (vc) types of C. parasitica isolates most commonly distributed in Castilla y León (EU1, EU11, EU12, EU66, CL5 and CL6). We investigated conversion rates of virulent isolates into hypovirulent isolates between pairings of isolates of the same vc type (EU1, EU11 and CL6) and also tested cross conversion rates between isolates of different vc types (EU1, EU11 and CL6 as donors and EU12, EU66, CL5 and CL6 as recipients). We carried out the hypovirus transmission assay with 1700 pairings, of which 700 had donor and recipient isolates of the same vc type and 1000 pairings of isolates had different vc types. Our results show that the conversion frequency to hypovirulent isolates was significantly affected by the vc type, the genotype of isolates with the same origin (province) and the interaction between both factors. In the conversion between isolates of the same vc type, the conversion rates were better with EU1 (ranging between 56 and 94 %) than with EU11 (varying from 4 to 58 %). In the cross conversion between donor and recipient isolates of different vc types, only CL5 and CL6 recipients were converted and the conversion of recipient isolates of EU12 and EU66 failed in all cases. For CL5 as recipient isolate, the conversion rates were similar with EU11 and CL6 as the donor isolates. Recipient isolates of CL6 had good conversion with donor isolates from the same vc type (CL6) and in cross conversion the results were better with donor EU1. Fungal isolates from chestnut stands in León displayed the best conversion rates, followed by those from Zamora, Salamanca and Ávila when the donor and the recipient isolates were of the same vc type. The fungal isolates appear to have a strong influence on the transmission rate of the hypovirus, at least between strains isolated from chestnut stands in Castilla y León. EU1 isolates were more susceptible to conversion than the isolates from EU11. The results highlight the differences in hypovirus transmission, regarding vc types and the genotype of isolates from the same province, when donor and recipient isolates are of the same vc type. Further transmission assays would be useful to determine why hypovirus transmissions, when compared to the hypovirus transmission of other European assays, have different conversion rates with fungal isolates from Castilla y León.

Keywords

Cryphonectria parasitica Chestnut blight vc type Hypovirulence 

References

  1. Akilli, S., Serce, C. U., Katircioglu, Y. Z., Maden, S., & Rigling, D. (2013). Characterization of hypovirulent isolates of the chestnut blight fungus, Cryphonectria parasitica from the Marmara and Black Sea regions of Turkey. European Journal of Plant Pathology, 135, 323–334.CrossRefGoogle Scholar
  2. Allemann, C., Hoegger, P., Heiniger, U., & Rigling, D. (1999). Genetic variation of Cryphonectria hypoviruses (CHV1) in Europe, assessed using RFLP markers. Molecular Ecology, 8, 843–854.CrossRefPubMedGoogle Scholar
  3. Anagnostakis, S. L., & Day, P. R. (1979). Hypovirulence conversion in Endothia parasitica. Phytopathology, 69, 1226–1229.CrossRefGoogle Scholar
  4. Bragança, H., Simões, S., Onofre, N., Tenreiro, R., & Rigling, D. (2007). Cryphonectria parasitica in Portugal: diversity of compatibility types, mating types, and occurrence of hypovirulence. Forest Pathology, 37, 391–402.CrossRefGoogle Scholar
  5. Brusini, J., & Robin, C. (2013). Mycovirus transmission revisited by in situ pairings of vegetatively incompatible isolates of Cryphonectria parasitica. Journal of Virological Methods, 187, 435–442.CrossRefPubMedGoogle Scholar
  6. Bryner, S. F., & Rigling, D. (2011). Temperature-dependent genotype-by-genotype interaction between a pathogenic fungus and its hyperparasitic virus. The American Naturalist, 177, 65–74.CrossRefPubMedGoogle Scholar
  7. Bryner, S. F., & Rigling, D. (2012). Virulence not only costs but also benefits the transmission of a fungal virus. Evolution, 66, 2540–2550.CrossRefPubMedGoogle Scholar
  8. Bryner, S. F., Rigling, D., & Brunner, P. C. (2012). Invasion history and demographic pattern of Cryphonectria hypovirus 1 across European populations of the chestnut blight fungus. Ecology and Evolution, 2, 3227–3241.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Castaño, C., Bassie, L., Oliach, D., Gómez, M., Medina, V., Liu, B., & Colinas, C. (2015). Cryphonectria hypovirus 1 (CHV-1) survey reveals los occurrence and diversity of subtypes in NE Spain. Forest Pathology, 45, 51–59.CrossRefGoogle Scholar
  10. Choi, H. G., Dawe, A. L., Churbanov, A., Smith, M. L., Milgroom, M. G., & Nuss, D. L. (2012). Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica. Genetics, 190, 113–127.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Colinas, C., Rojo, M., Argemí, J., Heras, J., Castaño, C., Rotllan, X., Gómez, M., Gilarte, S., Ustrell, E., Sarri, H., 2009. El control biológico del chancro del castaño en Cataluña. 5° Congreso Forestal Español. Septiembre 2009. Ávila, Spain.Google Scholar
  12. Cortesi, P., & Milgroom, M. G. (1998). Genetics of vegetative incompatibility in Cryphonectria parasitica. Applied and Environmental Microbiology, 64, 2988–2994.PubMedCentralPubMedGoogle Scholar
  13. Cortesi, P., McCulloch, C. E., Song, H., Lin, H., & Milgroom, M. G. (2001). Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics, 159, 107–118.PubMedCentralPubMedGoogle Scholar
  14. Dawe, A., & Nuss, D. (2001). Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annual Review of Genetics, 35, 1–29.CrossRefPubMedGoogle Scholar
  15. Deng, Q. C., Ye, Y., Miao, M., Qin, F., Tao, L., & KeRong, W. (2009). The horizontal transmission of Cryphonectria hypovirus 1 (CHV1) is affected by virus strains. Chinese Science Bulletin, 54, 3053–3060.CrossRefGoogle Scholar
  16. Ding, P., Liu, F., Xu, C. H., & Wang, K. (2007). Transmission of Cryphonectria hypovirus to protect chestnut trees from chestnut blight disease. Biological Control, 40, 9–14.CrossRefGoogle Scholar
  17. Gobbin, D., Hoegger, P. J., Heiniger, U., & Rigling, D. (2003). Sequence variation and evolution of Cryphonectria hypovirus 1 (CHV1) in Europe. Virus Research, 97, 39–46.CrossRefPubMedGoogle Scholar
  18. González-Varela, G., González, A. J., & Milgroom, M. G. (2011). Clonal population structure and introductions of the chestnut blight fungus, Cryphonectria parasitica, in Asturias, northern Spain. European Journal of Plant Pathology, 131, 67–79.CrossRefGoogle Scholar
  19. Heiniger, U., & Rigling, D. (1994). Biological control of chestnut blight in Europe. Annual Review of Phytopathology, 32, 581–599.CrossRefGoogle Scholar
  20. Hillman, B. I., & Suzuki, N. (2004). Viruses of the chestnut blight fungus, Cryphonectria parasitica. Advances in Virus Research, 63, 423–472.CrossRefPubMedGoogle Scholar
  21. Homs, G., Rodriguez, J., Rigling, D., Colinas, C. (2001).Caracterización de la población de Cryphonectria parasitica y detección de cepas hipovirulentas en 3 subpoblaciones de Cataluña. Montes para la sociedad del nuevo milenio. III Congreso Forestal Español. Ed. Junta de Andalucía. Granada.Google Scholar
  22. Krstin, L., Novak-Agbaba, S., Rigling, D., Krajačić, M., & Ćurković Perica, M. (2008). Chestnut blight fungus in Croatia: diversity of vegetative compatibility types, mating types and genetic variability of associated Cryphonectria hypovirus 1. Plant Pathology, 57, 1086–1096.CrossRefGoogle Scholar
  23. Krstin, L., Novak-Agbaba, S., Rigling, D., & Ćurković-Perica, M. (2011). Diversity of vegetative compatibility types and mating types of Cryphonectria parasitica in Slovenia and occurrence of associated Cryphonectria hypovirus 1. Plant Pathology, 60, 752–761.CrossRefGoogle Scholar
  24. Liu, Y. C., & Milgroom, M. G. (1996). Correlation between hypovirus transmission and the number of vegetative incompatibility (vic) genes different among strains form a natural population of Cryphonectria parasitica. Phytopathology, 86, 79–86.CrossRefGoogle Scholar
  25. Milgroom, M. G., & Cortesi, P. (2004). Biological control of chestnut blight with hypovirulence: a critical analysis. Annual Review of Phytopathology, 42, 311–338.CrossRefPubMedGoogle Scholar
  26. Milgroom, M. G., Sotirovski, K., Spica, D., Davis, J. E., Brewer, M. T., Milevs, M., & Cortesi, P. (2008). Clonal population structure of the chestnut blight fungus in expanding ranges in southeastern Europe. Molecular Ecology, 17, 4446–4458.CrossRefPubMedGoogle Scholar
  27. Montenegro, D., Aguín, O., Sainz, M. J., Hermida, M., & Mansilla, J. P. (2008). Diversity of vegetative compatibility types, distribution of mating types and occurrence of hypovirulence of Cryphonectria parasitica in chestnut stands in NW Spain. Forest Ecology and Management, 256, 973–980.CrossRefGoogle Scholar
  28. Morris, T. J., & Dodds, J. A. (1979). Isolation and analysis of double-stranded RNA from virus infected plant and fungal tissue. Phytopathology, 69, 854–858.CrossRefGoogle Scholar
  29. Papazova-Anakieva, I., Sotirovski, K., Cortesi, P., & Milgroom, M. G. (2008). Horizontal transmission of hypoviruses between vegetative compatibility types of Cryphonectria parasitica in Macedonia. European Journal of Plant Pathology, 120, 35–42.CrossRefGoogle Scholar
  30. Rigling, D., Heiniger, U., & Hohl, H. R. (1989). Reduction of laccase activity in dsRNA-containing hypovirulent strains of Cryphonectria (Endothia)parasitica. Phytopathology, 79, 219–223.CrossRefGoogle Scholar
  31. Peters, F. S., Bußkamp, J., Prospero, S., Rigling, D., Metzler, B. (2014). Genetic diversification of the chestnutblight fungus Cryphonectria parasitica and its associated hypovirus in Germany. Fungal Biology, 118, 193–210.Google Scholar
  32. Robin, C., Lanz, S., Soutrenon, A., & Rigling, D. (2010). Dominance of natural over released biological control agents of the chestnut blight fungus Cryphonectria parasitica in south-eastern France is associated with fitness-related traits. Biological Control, 53, 55–61.CrossRefGoogle Scholar
  33. Sotirovski, K., Milgroom, M. G., Rigling, D., & Heiniger, U. (2006). Ocurrence of the Cryphonectria hypovirus 1 in the chestnut blight fungus in Macedonia. Forest Pathology, 36, 136–143.CrossRefGoogle Scholar
  34. Sotirovski, K., Rigling, D., Heiniger, U., & Milgroom, M. G. (2011). Variation in virulence of Cryphonectria hypovirus 1 in Macedonia. Forest Pathology, 41, 59–65.CrossRefGoogle Scholar
  35. Van Alfen, N. K. (1982). Biology and potential for disease control of hypovirulence of Endothia parasitica. Annual Review of Phytopathology, 20, 349–362.CrossRefGoogle Scholar
  36. Zamora, P., Martín, A. B., Rigling, D., & Diez, J. J. (2012). Diversity of Cryphonectria parasitica in western Spain and identification of hypovirus- infected isolates. Forest Pathology, 42, 412–419.CrossRefGoogle Scholar
  37. Zamora, P., Martín, A. B., San Martín, R., Martínez-Álvarez, P., & Diez, J. J. (2014). Control of chestnut blight by the use of hypovirulent strains of the fungus Cryphonectria parasitica in northwestern Spain. Biological Control, 79, 58–66.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • P. Zamora
    • 1
    • 3
    • 4
  • A. B. Martín
    • 1
  • M. Dueñas
    • 1
  • R. San Martin
    • 2
    • 4
  • J. J. Diez
    • 3
    • 4
  1. 1.Centro de Sanidad Forestal de Calabazanos. Consejería de Fomento y Medio Ambiente. JCyLVillamuriel de CerratoEspaña
  2. 2.Departamento de Estadística ETSIIAA PalenciaU. De ValladolidPalenciaEspaña
  3. 3.Departamento de Producción Vegetal y Recursos Forestales. ETSIIAA PalenciaU. De ValladolidPalenciaEspaña
  4. 4.Sustainable Forest Management Research InstituteUniversity of Valladolid – INIAPalenciaEspaña

Personalised recommendations