European Journal of Plant Pathology

, Volume 143, Issue 4, pp 753–765 | Cite as

Inhibition of Botrytis cinerea and accumulation of stilbene compounds by light-emitting diodes of grapevine leaves and differential expression of defense-related genes

  • S. Y. Ahn
  • S. A. Kim
  • H. K. YunEmail author


Grey mold (Botrytis cinerea) is one of the most common diseases to attack grapes, causing serious damage during grape production. In the present study, the effects of light-emitting diodes (LED) on the suppression of fungal growth, defense related gene expression and accumulation of stilbenic compounds were investigated. Irradiation with blue and red light inhibited lesion development relative to fluorescent light in detached leaves. Treatment of detached leaves with LED light, especially blue and red, resulted in accumulation of stilbenic compounds and differential expression of genes involved in defense response. Among five stilbenic compounds, concentrations of trans- and cis-piceid were higher than those of trans- and cis-resveratrol, as well as piceatannol in both ‘Campbell Early’ and ‘Kyoho’ leaves treated with blue and red light. The gene expression of beta-1,3 glucanase (Glu), osmotin (OSM), pathogen-related protein 4a (PR4a), protease inhibitor-like protein (PILP), thaumatin-like protein (TLP), glutathione-S-transferase (GST), phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and stilbene synthase (STS) were highly upregulated under blue and red LED light. The results reported here will facilitate development of alternative methods to enhance the accumulation of resveratrol compound and protect grapevine from fungal pathogen infections.


LED Red light Stilbene compound Disease response Gene expression 



Allen oxide cyclase


Ascorbate peroxidase




Chalcone synthase


Chitinase-like protein


Beta-1,3 glucanase


Glutathione peroxidase




Light emitting diodes






Phenylalanine ammonia-lyase


Protease inhibitor-like protein


Pathogen-related protein 4a


Resveratrol O-methyltransferase


Stilbene synthase


Thaumatin-like protein



This work was supported by the Agricultural R&D (Grant no. PJ011631), Rural Development Administration, Republic of Korea.


  1. Adrian, M., Jeandet, P., Douillet-Breuil, A. C., Tesson, L., & Bessis, R. (2000). Stilbene content of mature Vitis vinifera berries in respo nse to UV-C elicitation. Journal of Agriculture and Food Chemistry, 48, 6103–6105.CrossRefGoogle Scholar
  2. Ahn, S. Y., Kim, S. A., Choi, S. J., & Yun, H. K. (2015). Comparison of accumulation of stilbene compounds and stilbene related gene expression in two grape berries irradiated with different light sources. Horticulture, Environment and Biotechnology, 56, 36–43.CrossRefGoogle Scholar
  3. Bonomelli, A., Mercier, L., Franchel, J., Baillieul, F., Benizri, E., & Mauro, M.-C. (2004). Response of grapevine defense to UV-C exposure. American Journal of Enology and Viticulture, 55, 51–59.Google Scholar
  4. Briggs, W. R., Beck, C. F., Cashmore, A. R., Christie, J. M., Hughes, J., Jarillo, J. A., Kagawa, T., Kanegae, H., Liscum, E., Nagatani, A., Okada, K., Salomon, M., Rudiger, W., Sakai, T., Takano, M., Wada, M., & Watson, J. C. (2001). The phototropin family of photoreceptors. Plant Cell, 13, 993–997.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Canessa, P., Schumacher, J., Hevia, M. A., Tudzynski, P., & Larrondo, L. F. (2013). Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the white collar complex. PLoS ONE, 8, e84223.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Chamnongpol, S., Willekens, H., Langebartels, C., Van Montagu, M., Inzé, D., & Van Camp, W. (1996). Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. The Plant Journal, 10, 491–503.CrossRefGoogle Scholar
  7. Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology, 11, 113–116.CrossRefGoogle Scholar
  8. Chen, C. H., Dunlap, J. C., & Loros, J. J. (2010). Neurospora illuminates fungal photoreception. Fungal Genetics and Biology, 47, 922–929.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Choi, S. J. (2011). The identification of stilbene compounds and the change of their contents in UV-irradiated grapevine leaves. Korean Journal of Horticultural Science and Technology, 29, 374–381.Google Scholar
  10. Choi, S. J. (2012). The Influence of UV irradiation on stilbene contents and gray mold incidence in grapevine leaves. Korean Journal of Horticultural Science and Technology, 30, 493–500.CrossRefGoogle Scholar
  11. Chong, J., Poutaraud, A., & Hugueney, P. (2009). Metabolism and roles of stilbenes in plants. Plant Science, 177, 143–155.CrossRefGoogle Scholar
  12. Colhoun, J. (1973). Effects of environmental factors on plant disease. Annual Review of Phytopathology, 11, 343–364.CrossRefGoogle Scholar
  13. Corrochano, L. M. (2007). Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochemical and Photobiological Sciences, 6, 725–736.CrossRefPubMedGoogle Scholar
  14. Demkura, P. V., & Ballaré, C. L. (2012). UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Molecular Plant, 5, 642–652.CrossRefPubMedGoogle Scholar
  15. Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085–1097.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Ebisawa, M., Shoji, K., Kato, M., Shimomura, K., Goto, F., & Yoshihara, T. (2008). Supplementary ultraviolet radiation B together with blue night at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca Savita L.). Environmental Control in Biology, 46, 1–11.CrossRefGoogle Scholar
  17. Gatto, P., Vrhovsek, U., Muth, J., Segala, C., Romualdi, C., Fontana, P., Pruefer, D., Stefanini, M., Moser, C., Mattivi, F., & Velasco, R. (2008). Ripening and genotype control stilbene accumulation in healthy grapes. Journal of Agriculture and Food Chemistry, 56, 11773–11785.CrossRefGoogle Scholar
  18. Gonzalez-Barrio, R., Vidal-Guevara, M. L., Tomas-Barberan, F. A., & Espin, J. C. (2009). Preparation of a resveratrol-enriched grape juice based on ultraviolet C-treated berries. Innovative Food Science & Emerging Technologies, 10, 374–382.CrossRefGoogle Scholar
  19. Herrera-Estrella, A., & Horwitz, B. A. (2007). Looking through the eyes of fungi: molecular genetics of photoreception. Molecular Microbiology, 64, 5–15.CrossRefPubMedGoogle Scholar
  20. Idnurm, A., & Crosson, S. (2009). The photobiology of microbial pathogenesis. PLoS Pathogens, 5, e1000470.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Idnurm, A., Verma, S., & Corrochano, L. M. (2010). A glimpse into the basis of vision in the kingdom Mycota. Fungal Genetics and Biology, 47, 881–892.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Imada, K., Tanaka, S., Ibaraki, Y., Yoshimura, K., & Ito, S. (2014). Antifungal effect of 405-nm light on Botrytis cinerea. Letters in Applied Microbiology, 59, 670–676.CrossRefPubMedGoogle Scholar
  23. Islam, S. Z., Honda, Y., & Arase, S. (1998). Light-induced resistance of broad bean against Botrytis cinerea. Journal of Phytopathology, 146, 479–485.CrossRefGoogle Scholar
  24. Islam, S. Z., Honda, Y., & Arase, S. (1999). Some characteristics of red light induced substance(s) against Botrytis cinerea produced in broad bean leaflets. Journal of Phytopathology, 147, 65–70.CrossRefGoogle Scholar
  25. Islam, S. Z., Honda, Y., Sawa, Y., & Babadoost, M. (2002). Characterization of antifungal glycoprotein in red-light-irradiated broadbean leaflets. Mycoscience, 43, 471–473.CrossRefGoogle Scholar
  26. Islam, S. Z., Babadoost, M., & Honda, Y. (2004). Optimization of red-light irradiation in inducing resistance in vegetable seedlings against Phytophthora capsici. Phytopathology, 94, S44.CrossRefGoogle Scholar
  27. Islam, S. Z., Babadoost, M., Bekal, S., & Lambert, K. (2008). Red light-induced systemic disease resistance against root-knot nematode Meloidogyne javanica and Pseudomonas syringae pv. tomato DC 3000. Journal of Phytopathology, 156, 708–714.CrossRefGoogle Scholar
  28. Jang, H. I., Lee, S. B., Kim, K. H., Choi, Y. M., & Kim, K. Y. (1995). Studies on ecology of grape grey mold by Botrytis cinerea. Agricultural Science Report, 37, 307–313.Google Scholar
  29. Jarvis, W.R. (1977). Botryotinia and Botrytis species - taxonomy, physiology and pathogenicity. A guide to the literature, Monograph no. 14, Ottawa, Research branch, Canada Department of Agriculture.Google Scholar
  30. Jeandet, P., Douillet-Breuil, A. C., Bessis, R., Debord, S., Sbaghi, M., & Adrian, M. (2002). Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Journal of Agricultural and Food Chemistry, 50, 2731–2741.CrossRefPubMedGoogle Scholar
  31. Keller, M., Rogiers, S. Y., & Schultz, H. R. (2003). Nitrogen and ultraviolet radiation modify grapevines susceptibility to powdery mildew. Vitis, 42, 87–94.Google Scholar
  32. Khanam, N. N., Kihara, J., Honda, Y., Tsukamoto, T., & Arase, S. (2005). Studies on red light-induced resistance of broad bean to Botrytis cinerea: I. Possible production of suppressor and elicitor by germinating spores of pathogen. Journal of General Plant Pathology, 71, 285–288.CrossRefGoogle Scholar
  33. Kim, K., Kook, H.-S., Jang, Y.-J., Lee, W.-H., Kamala-Kannan, S., Chae, J.-C., & Lee, K.-J. (2013). The effect of blue-light-emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. Journal of Plant Pathology and Microbiology, 4, 203.Google Scholar
  34. Kobayashi, M., Kanto, T., Fujikawa, T., Yamada, M., Ishiwata, M., Satou, M., & Hisamatsu, T. (2013). Supplemental UV radiation controls rose powdery mildew disease under the greenhouse conditions. Environmental Control in Biology, 51, 157–163.CrossRefGoogle Scholar
  35. Kondo, S., Tomiyama, H., Rodyoung, A., Okawa, K., Ohara, H., Sugaya, S., Terahara, N., & Hirai, N. (2014). Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. Journal of Plant Physiology, 171, 823–829.CrossRefPubMedGoogle Scholar
  36. Kudo, R., Yamamoto, K., Suekane, A., & Ishida, Y. (2009). Development of green light pest control systems in plants. I. Studies on effects of green light irradiation on induction of disease resistance. SRI Research Reports, 93, 31–35.Google Scholar
  37. Kudo, R., Ishida, Y., & Yamamoto, K. (2011). Effect of green light irradiation on induction of disease resistance in plants. Acta Horticulturae, 907, 251–254.CrossRefGoogle Scholar
  38. Langcake, P., & Pryce, R. (1976). The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology, 9, 77–86.CrossRefGoogle Scholar
  39. Lee, M. J., Son, J. E., & Oh, M. M. (2013). Growth and phenolic content of sowthistle grown in a closed-type plant production system with a UV-A or UV-B lamp. Horticulture, Environment and Biotechnology, 54, 492–500.CrossRefGoogle Scholar
  40. Ma, G., Zhang, L., Setiawan, C. K., Yamawaki, K., Asai, T., Nishikawa, F., Maezawac, S., Sato, H., Kanemitsu, N., & Kato, M. (2014). Effect of red and blue LED light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest broccoli. Postharvest Biology and Technology, 94, 97–103.CrossRefGoogle Scholar
  41. Matsuura, S., & Ishikura, S. (2014). Suppression of tomato mosaic virus disease in tomato plants by deep ultraviolet irradiation using light-emitting diodes. Letters in Applied Microbiology, 59, 457–463.CrossRefPubMedGoogle Scholar
  42. Mattivi, F., Reniero, F., & Korhammer, S. (1995). Isolation, characterization and evolution in red wine vinification of resveratrol monomers. Journal of Agricultural and Food Chemistry, 43, 1820–1823.CrossRefGoogle Scholar
  43. Michaloski, A. J. (1991). Method and apparatus for ultraviolet treatment of plants. U.S. Patent, 5, 040–329.Google Scholar
  44. Muneer, S., Kim, E. J., Park, J. S., & Lee, J. H. (2014). Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International Journal of Molecular Sciences, 15, 4657–4670.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Murdoch, L. E., McKenzie, K., Maclean, M., Macgregor, S. J., & Anderson, J. G. (2013). Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biology, 117, 519–527.CrossRefPubMedGoogle Scholar
  46. Ndiaye, M., Kumar, R., & Ahmad, N. (2011). Resveratrol in cancer management: where are we and where we go from here? Annals of the New York Academy of Sciences, 1215, 144–149.CrossRefPubMedGoogle Scholar
  47. Nigro, F., Ippolitto, A., & Lima, G. (1998). Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology, 13, 171–181.CrossRefGoogle Scholar
  48. Nilsen, K. N., & Hodges, C. F. (1980). Photomorphogenically defined light and resistance of Poa pratensis to Drechslera sorokiniana. Plant Physiology, 65, 569–573.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Rahman, M. Z., Honda, Y., Islam, S. Z., & Arase, S. (2002). Effect of metabolic inhibitors on red light-induced resistance of broad bean (Vicia faba L.) against Botrytis cinerea. Journal of Phytopathology, 150, 463–468.CrossRefGoogle Scholar
  50. Rahman, M. Z., Honda, Y., & Arase, S. (2003). Red-light-induced resistance in broad bean (Vicia faba L.) to leaf spot disease caused by Alternaria tenuissima. Journal of Phytopathology, 151, 86–91.CrossRefGoogle Scholar
  51. Rahman, M. Z., Khanam, H., Ueno, M., Kihara, J., Honda, Y., & Arase, S. (2010). Suppression by red light irradiation of Corynespora leaf spot of cucumber caused by Corynespora cassiicola. Journal of Phytopathology, 158, 378–381.CrossRefGoogle Scholar
  52. Romero-Perez, A., Lamuela-Raventos, R., Waterhouse, A., & Torre-Boronat, M. (1996). Levels of cis and trans resveratrol and their glucosides in white and rose Vitis vinifera wines from Spain. Journal of Agricultural and Food Chemistry, 44, 2124–2128.CrossRefGoogle Scholar
  53. Romero-Perez, A., Lamuela-Raventos, R., Andres-Lacueva, C., & Torre-Boronat, M. (2001). Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content. Journal of Agricultural and Food Chemistry, 49, 210–215.CrossRefPubMedGoogle Scholar
  54. Schmidlin, L., Poutaraud, A., Claudel, P., Mestre, P., Prado, E., Santos-Rosa, M., Wiedemann-Merdinoglu, S., Karst, F., Merdinoglu, D., & Hugueney, P. (2008). A stress-inducible resveratrol o-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiology, 148, 1630–1639.PubMedCentralCrossRefPubMedGoogle Scholar
  55. Schuerger, A. C., & Brown, C. S. (1997). Spectral quality affects disease development of three pathogens on hydroponically grown plants. HortScience, 32, 96–100.PubMedGoogle Scholar
  56. Stef, G., Csiszar, A., Lerea, K., Ungvari, Z., & Veress, G. (2006). Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. Journal of Cardiovascular Pharmacology, 48, 1–5.CrossRefPubMedGoogle Scholar
  57. Suthaparan, A., Stensvand, A., Torre, S., Herrero, M. L., Pettersen, R. I., Gadoury, D. M., & Gislerød, H. R. (2010a). Continuous lighting reduces conidial production and germinability in the rose powdery mildew pathosystem. Plant Disease, 94, 339–344.CrossRefGoogle Scholar
  58. Suthaparan, A., Torre, S., Stensvand, A., Herrero, M. L., Pettersen, R. I., Gadoury, D. M., & Gislerød, H. R. (2010b). Specific light-emitting diodes can suppress sporulation of Podosphaera pannosa on greenhouse roses. Plant Disease, 94, 1105–1110.CrossRefGoogle Scholar
  59. Suthaparan, A., Stensvand, A., Solhaug, K. A., Torre, S., Mortensen, L. M., Gadoury, D. M., Seem, R. C., & Gislerød, H. R. (2012). Suppression of powdery mildew (Podosphaera pannosa) in greenhouse roses by brief exposure to supplemental UV-B radiation. Plant Disease, 96, 1653–1660.CrossRefGoogle Scholar
  60. Tabira, H., Otani, H., Shimomura, N., Kodama, M., Kohmoto, K., & Nishimura, S. (1989). Light-induced insensitivity of apple and Japanese pear leaves to AM-toxin from Alternaria alternate apple pathotype. Annals of the Phytopathological Society of Japan, 55, 567–578.CrossRefGoogle Scholar
  61. Tennessen, D. J., Singsaas, E. L., & Sharkey, T. D. (1994). Light-emitting diodes as a light source for photosynthesis research. Photosynthesis Research, 39, 85–92.CrossRefPubMedGoogle Scholar
  62. Tříska, J., & Houška, M. (2012). Physical methods of resveratrol induction in grapes and grape products—a review. Czech Journal of Food Sciences, 30, 489–502.Google Scholar
  63. Upadhyaya, G.K. (2013). Effect of light powdery mildew in greenhouse tomato (Solanum lycopersicum ‘Espero’): Master Thesis, Department of Plant and Environmental Sciences (IPM) Norwegian University of Life Sciences, Norway.Google Scholar
  64. Vakalounakis, D. J., & Christias, C. (1981). Sporulation in Alternaria cichorii is controlled by a blue and near ultraviolet reversible photoreaction. Canadian Journal of Botany, 59, 626–628.CrossRefGoogle Scholar
  65. Waffo-Téguo, P., Fauconneau, B., Deffieux, G., Huguet, F., Vercauteren, J., & Merillon, J.-M. (1998). Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. Journal of Natural Products, 61, 655–657.CrossRefPubMedGoogle Scholar
  66. Wang, W., Tang, K., Yang, H.-R., Wen, P.-F., Zhang, P., Wang, H.-L., & Huang, W.-D. (2010). Distribution of resveratrol and stilbene synthase in young grape plant (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiology and Biochemistry, 48, 142–152.CrossRefPubMedGoogle Scholar
  67. Young, A. R. (2006). Acute effects of UVR on human eyes and skin. Progress in Biophysics and Molecular Biology, 92, 80–85.CrossRefPubMedGoogle Scholar
  68. Yun, H. K., Park, K. S., Noh, J. H., & Kim, S. H. (2012). Current status of grape breeding and viticulture in Korea. In P. V. Szabo & J. Sjojania (Eds.), Grapevines: Varieties, cultivation, and management. New York: Nova Scientific Publishers.Google Scholar
  69. Zhou, B., Wang, Y., Zhan, Y., Li, Y., & Kawabata, S. (2013). Chalcone synthase family genes have redundant roles in anthocyanin biosynthesis and in response to blue/ UV-A light in turnip (Brassica rapa; Brassicaceae). American Journal of Botany, 100, 2458–2467.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  1. 1.Department of Horticulture and Life Science and LED-IT Fusion Technology Research CenterYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations