European Journal of Plant Pathology

, Volume 143, Issue 4, pp 873–880 | Cite as

Deposition patterns of Fusarium graminearum ascospores and conidia within a wheat canopy

  • Valentina Manstretta
  • Emmanuelle Gourdain
  • Vittorio RossiEmail author


Fusarium graminearum is the most important species in the fungal complex causing Fusarium head blight of small grain cereals. The fungus produces two types of spores on crop residues (ascospores and conidia), which are dispersed to ears by air currents and rain splashes, respectively. The distribution patterns of ascospores and conidia within a wheat canopy between booting and grain maturity were assessed by using leaf-like spore traps placed at 10, 30, and 60 cm height, and ear-like spore traps at 90 cm height. Maize residues were the inoculum source for both ascospores and conidia within the wheat plot. Of the total spores counted, 93 % were ascospores and 7 % were conidia. Approximately 41, 22, 19, and 18 % of the ascospores, and 77, 10, 8, and 5 % of the conidia were sampled at 10, 30, 60, and 90 cm height, respectively. Ascospore numbers did not significantly differ between those sampled on the upper or the lower sides of the leaf-like traps or among the four orientations (north, south, east, or west) of the ear-like traps. According to the index of dispersion (D), the spatial distribution of trapped ascospores was largely random (i.e., D ≤ 1) rather than aggregated (i.e., D > 1). The collective results (averaged across all traps and sampling periods) showed that the random distribution of the ascospores within the wheat canopy and at the ear level was associated with a clear vertical distribution pattern indicating an upward movement of ascospores from the maize residues on the ground.


Gibberella zeae Fusarium head blight Small-grain cereals Inoculum 



This study was supported by the Doctoral School on the Agro-Food System (Agrisystem) of the Università Cattolica del Sacro Cuore (Italy).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

The research do not involve Human Participants nor Animals.


  1. Ali, S., & Francl, L. (2001). Progression of Fusarium species on wheat leaves from seedling to adult stages in North Dakota. In 2001 National Fusarium Head Blight Forum (p. 99). Erlanger, KY, USA.Google Scholar
  2. Bergstrom, G. C., & Schmale, D. G. I. (2007). Aerobiology of Gibberella zeae: whence come the spores for Fusarium head blight? In 2007 National Fusarium Head Blight Forum (pp. 70–71). Kansas City, MO, USA.Google Scholar
  3. De Luna, L., Bujold, I., Carisse, O., & Paulitz, T. C. (2002). Ascospore gradients of Gibberella zeae from overwintered inoculum in wheat fields. Canadian Journal of Plant Pathology, 24, 457–464.CrossRefGoogle Scholar
  4. Del Ponte, E. M., Shah, D. A., & Bergstrom, G. C. (2003). Spatial patterns of Fusarium head blight in New York wheat fields suggest role of airborne inoculum. Plant Health Progress. doi: 10.1094/PHP-2003-0418-01-RS.Google Scholar
  5. Fernando, W. G., Paulitz, T. C., Seaman, W. L., Dutilleul, P., & Miller, J. D. (1997). Head blight gradients caused by Gibberella zeae from area sources of inoculum in wheat field plots. Phytopathology, 87(4), 414–421.CrossRefPubMedGoogle Scholar
  6. Fernando, W. G. D., Miller, J. D., Seaman, W. L., Seifert, K., & Paulitz, T. C. (2000). Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots. Canadian Journal of Botany, 78(4), 497–505.CrossRefGoogle Scholar
  7. Fitt, B. D. L., McCartney, H. A., & Walklate, P. J. (1989). The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology, 27, 241–270.CrossRefGoogle Scholar
  8. Francl, L., Shaner, G., Bergstrom, G. C., Gilbert, J., Pedersen, W., Dill-Macky, R., et al. (1999). Daily inoculum levels of Gibberella zeae on wheat spikes. Plant Disease, 83(7), 662–666.CrossRefGoogle Scholar
  9. Headrick, J. M., Glawe, D. A., & Pataky, J. K. (1988). Ascospore polymorphism in Gibberella zeae. Mycologia, 80(5), 679–684.CrossRefGoogle Scholar
  10. Hörberg, H. M. (2002). Patterns of splash dispersed conidia of Fusarium poae and Fusarium culmorum. European Journal of Plant Pathology, 108, 73–80.CrossRefGoogle Scholar
  11. Inch, S., Fernando, W. G. D., & Gilbert, J. (2005). Seasonal and daily variation in the airborne concentration of Gibberella zeae (Schw.) Petch spores in Manitoba. Canadian Journal of Plant Pathology, 27, 357–363.CrossRefGoogle Scholar
  12. Ingold, C. T. (1933). Spore discharge in the Ascosmycetes. New Phytologist, 32(3), 175–196.CrossRefGoogle Scholar
  13. Isard, S. A., & Gage, S. H. (2001). Flow of life in the atmosphere: an airscape approach to understanding invasive organisms (p. 240). East lansing: Michigan State University Press.Google Scholar
  14. Jenkinson, P., & Parry, D. W. (1994). Splash dispersal of conidia of Fusarium culmorum and Fusarium avenaceum. Mycological Research, 98(5), 506–510.CrossRefGoogle Scholar
  15. Keller, M. D., Waxman, K. D., Bergstrom, G. C., & Schmale, D. G. (2010). Local distance of wheat spike infection by released clones of Gibberella zeae disseminated from infested corn residue. Plant Disease, 94(9), 1151–1155.CrossRefGoogle Scholar
  16. Keller, M. D., Bergstrom, G. C., & Shields, E. J. (2014). The aerobiology of Fusarium graminearum. Aerobiologia, 30(2), 123–136.CrossRefGoogle Scholar
  17. Leslie, J. F., & Summerell, B. (2006). The Fusarium Laboratory manual (p. 387). Ames: Blackwell Publishing.CrossRefGoogle Scholar
  18. Madden, L. V. (1997). Effects of rain on splash dispersal of fungal pathogens. Canadian Journal of Plant Pathology, 19(2), 225–230.CrossRefGoogle Scholar
  19. Madden, L. V., & Hughes, G. (1995). Plant disease incidence: distributions, heterogeneity, and temporal analysis. Annual Review of Phytopathology, 33, 529–564.CrossRefPubMedGoogle Scholar
  20. Madden, L. V., Hughes, G., & van der Bosch, F. (2007). The study of plant disease epidemics (421)). St. Paul: APS-Press.Google Scholar
  21. Maldonado-Ramirez, S. L., Schmale, D. G. I., Shields, E. J., & Bergstrom, G. C. (2005). The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agricultural and Forest Meteorology, 132(1–2), 20–27.CrossRefGoogle Scholar
  22. Manstretta, V. (2015). Ascospore production, dispersal and survival in Fusarium graminearum. Doctoral thesis. Università Cattolica del Sacro Cuore.Google Scholar
  23. Markell, S. G., & Francl, L. J. (2003). Fusarium head blight inoculum: species prevalence and Gibberella zeae spore type. Plant Disease, 87(7), 814–820.CrossRefGoogle Scholar
  24. Meier, U. (2001). Growth stages of mono-and dicotyledonous plants BBCH monograph. agriculture (p. 158).Google Scholar
  25. Mitter, V., Francl, L. J., Ali, S., Simpfendorfer, S., & Chakraborty, S. (2006). Ascosporic and conidial inoculum of Gibberella zeae play different roles in Fusarium head blight and crown rot of wheat in Australia and the USA. Australasian Plant Pathology, 35(4), 441.CrossRefGoogle Scholar
  26. Oke, T. R. (1987). Boundary layer climates (2nd ed., p. 464). Cambridge: Cambridge University Press.Google Scholar
  27. Osborne, L., & Stein, J. (2004). Inoculum distribution and temporal dynamics within the spring wheat canopy. In 2nd International Symposium on Fusarium Head Blight incorporating the 8th European Fusarium Seminar, Orlando, FL, 11–15 December 2004 (pp. 480–482).Google Scholar
  28. Osborne, L. E., & Stein, J. M. (2007). Epidemiology of Fusarium head blight on small-grain cereals. International Journal of Food Microbiology, 119(1–2), 103–108.CrossRefPubMedGoogle Scholar
  29. Osborne, L., Jin, Y., Rosolen, F., & Hannoun, M. J. (2002). FHB inoculum distribution on wheat plants within the canopy. In 2002 National Fusarium Head Blight Forum (p. 175). Erlanger, KY, USA.Google Scholar
  30. Panisson, E., Reis, E. M., & Boller, W. (2002). Quantificacao de propagulos de Gibberella zeae no ar infeccao de anteras em trigo. Fitopatologia Brasileira, 27(5), 489–494.CrossRefGoogle Scholar
  31. Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals - a review. Plant Pathology, 44, 207–238.CrossRefGoogle Scholar
  32. Paul, P. A., El-Allaf, S. M., Lipps, P. E., & Madden, L. V. (2004). Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology, 94(12), 1342–1349. doi: 10.1094/PHYTO.2004.94.12.1342.CrossRefPubMedGoogle Scholar
  33. Paulitz, T. C. (1996). Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots. Plant Disease, 80(6), 674–678.CrossRefGoogle Scholar
  34. Paulitz, T. C. (1999). Fusarium head blight : a re-emerging disease. Phytoprotection, 80, 127–133.CrossRefGoogle Scholar
  35. Pereyra, S. A., & Dill-Macky, R. (2008). Colonization of the residues of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Disease, 92(5), 800–807.CrossRefGoogle Scholar
  36. Pielou, E. C. (1977). Mathematical ecology (p. 385). John Wiley and Sons, Ltd.Google Scholar
  37. Prussin, A. J. I., Qing, L., Malla, R., Ross, S. D., & Schmale, D. G. I. (2014). Monitoring the long-distance transport of Fusarium graminearum from field-scale sources of inoculum. Plant Disease, 98(4), 504–511.CrossRefGoogle Scholar
  38. Rossi, V., Languasco, L., Pattori, E., & Giosuè, S. (2002). Dynamics of airborne Fusarium macroconidia in wheat fields naturally affected by Head Blight. Journal of Plant Pathology, 84(1), 53–64.Google Scholar
  39. Salgado, J. D., Madden, L. V., & Paul, P. A. (2008). Comparing effects of macroconidia and ascospores of Gibberella zeae on Fusarim head blight development in wheat. In 2008 National Fusarium Head Blight Forum (p. 790). Erlanger, KY.Google Scholar
  40. Schmale, D. G., Arntsen, Q. A., & Bergstrom, G. C. (2005a). The forcible discharge distance of ascospores of Gibberella zeae. Canadian Journal of Plant Pathology, 27(3), 376–382.CrossRefGoogle Scholar
  41. Schmale, D. G., Shah, D. A., & Bergstrom, G. C. (2005b). Spatial patterns of viable spore deposition of Gibberella zeae in wheat fields. Phytopathology, 95(5), 472–479.CrossRefPubMedGoogle Scholar
  42. Schmale, D. G., Shields, E. J., & Bergstrom, G. C. (2006). Night-time spore deposition of the Fusarium head blight pathogen, Gibberella zeae, in rotational wheat fields. Canadian Journal of Plant Pathology, 28, 100–108.CrossRefGoogle Scholar
  43. Schmale, D. G., Ross, S. D., Fetters, T. L., Tallapragada, P., Wood-Jones, A. K., & Dingus, B. (2012). Isolates of Fusarium graminearum collected 40–320 meters above ground level cause Fusarium head blight in wheat and produce trichothecene mycotoxins. Aerobiologia, 28(1), 1–11.CrossRefGoogle Scholar
  44. Shah, D. A., & Bergstrom, G. C. (2001). Spatial pattern of Fusarium head blight in New York what fields in 2000 and 2001. In 2001 National Fusarium Head Blight Forum (pp. 154–155). Erlanger, KY.Google Scholar
  45. Shah, D. A., Stockwell, C. A., Kawamoto, S. O., & Bergstrom, G. C. (2000). Spatial pattern of Fusarium head blight in New York wheat field during the epidemic of 2000. In 2000 National Fusarium head Blight Forum (pp. 174–175). Erlanger, KY, USA.Google Scholar
  46. Stack, R. W. (1989). A comparison of the inoculum potential of ascospores and conidia of Gibberella zeae. Canadian Journal of Plant Pathology, 11(2), 137–142.CrossRefGoogle Scholar
  47. Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195–209.CrossRefGoogle Scholar
  48. Trail, F. (2007). Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbiology Letters, 276(1), 12–18.CrossRefPubMedGoogle Scholar
  49. Van Maanen, A., & Xu, X. M. (2003). Modelling plant disease epidemics. European Journal of Plant Pathology, 109, 669–682.CrossRefGoogle Scholar
  50. Waggoner, P. E., & Rich, S. (1981). Lesion distribution, multiple infection, and the logistic increase of plant disease. Proceedings of the National Academy of Sciences of the United States of America, 78(6), 3292–3295.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Walklate, P. J., McCartney, H. A., & Fitt, B. D. L. (1989). Vertical dispersal of plant pathogens by splashing. Part II: experimental study of the relationship between raindrop size and the maximum splash height. Plant Pathology, 38(1), 64–70.CrossRefGoogle Scholar
  52. Xu, X.-M. (2003). Effects of environmental conditions on the development of Fusarium ear blight. European Journal of Plant Pathology, 109(7), 683–689.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Valentina Manstretta
    • 1
  • Emmanuelle Gourdain
    • 2
  • Vittorio Rossi
    • 1
    Email author
  1. 1.DI.PRO.VE.S. Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
  2. 2.ARVALIS - Institut du végétalBoignevilleFrance

Personalised recommendations