European Journal of Plant Pathology

, Volume 143, Issue 4, pp 691–704 | Cite as

Antagonistic activity of fungal endophyte filtrates against Gremmeniella abietina infections on Aleppo pine seedlings

  • Carmen RomeraloEmail author
  • Johanna Witzell
  • Rosa Romeralo-Tapia
  • Leticia Botella
  • Julio Javier Diez


Biological control agents (BCAs), and among them some species of fungal endophytes, are potential substitutes for chemical pesticides in the control of plant diseases due to their non-toxicity to human beings and their surrounding environment. One mode of action of fungal BCAs is through their bioactive, extracellular products, which can inhibit the growth of pathogens. In this study, the effect of fungal filtrates from four endophyte isolates (Trichoderma viride, Aureobasidium pullulans, Aureobasidium sp. and the unknown endophyte 20.1) on the advance of the pathogen Gremmeniella abietina on 2-year Pinus halepensis seedlings was evaluated. Both preventive and therapeutic treatments of the filtrates were studied by applying the filtrates either before or after the pathogen inoculation, respectively. Since G. abietina is a necrotrophic fungus, the length of the necrosis produced by the pathogen was used as response variable in our experiment. In order to explore the chemical composition of the fungal filtrates, a simple HPLC screening of UV-absorbing components was conducted. The results of the study showed that all fungal filtrates were able to reduce the advance of G. abietina when compared to the control seedlings, regardless of the time of inoculation and the treatment. Low-molecular weight phenolic compounds could be detected in some but not all filtrates, warranting further studies on the possible role of these compounds in fungal filtrates.


Biological control agents Antibiosis Secondary metabolites Forest pathogens Trichoderma Aureobasidium 



The study was financed by the project of the Ministry “Biological control of Gremmeniella abietina in Spain (AGL2008-03622)”. We are indebted to the Central Nursery from the regional government of Castilla y León for their contribution of the Aleppo pine seedlings. We want to deeply thank A.R. Benitez for his help with the inoculations. We want to thank to Mr. Francisco de la Rosa and Professor Luis Debán from the Department of Analytical Chemistry from University of Valladolid for all their help with the preparation of samples for HPLC separation of organic compounds as well as their scientific support, help and collaboration. Furthermore, we appreciate V. Pando’s help and advice about the statistics involved. We also want to thank the Short-Term Scientific Mission of the COST action FA1103 for the economic support. Lastly, we want to thank M. Pautasso and the anonymous reviewers for their helpful comments on an earlier draft of this manuscript and S.K. Fox and N. Brenville for the proof-reading.


  1. Abelló, M. A. (1998). Historia y evolución de las repoblaciones forestales en España. Madrid: Universidad Complutense de Madrid.Google Scholar
  2. Adomas, A., & Asiegbu, F. (2007). Analysis of organ-specific responses of Pinus sylvestris to shoot (Gremmeniella abietina) and root (Heterobasidion annosum) pathogens. Physiological and Molecular Plant Pathology, 69, 140–152. doi: 10.1016/j.pmpp.2007.04.001.CrossRefGoogle Scholar
  3. Agrios, G. N. (1997). Plant pathology (4th ed.). London: Academic Press.Google Scholar
  4. Alabouvette, C., Olivain, C., & Steinberg, C. (2006). Biological control of plant diseases: the European situation. European Journal of Plant Pathology, 114, 329–341. doi: 10.1007/s10658-005-0233-0.CrossRefGoogle Scholar
  5. Anagnostakis, S. L., & Day, P. R. (1979). Hypovirulence conversion in Endothia parasitica. Phytopathology, 69, 1226–1229. doi: 10.1094/Phyto-69-1226.CrossRefGoogle Scholar
  6. Aziz, A. Y., Foster, H. A., & Fairhurst, C. P. (1993). Extracellular enzymes of Trichoderma harzianum, T. polysporum and Scytalidium lignicola in relation to biological control of Dutch Elm disease. Arboricultural Journal, 17, 159–170. doi: 10.1080/03071375.1993.9746959.CrossRefGoogle Scholar
  7. Backman, P. A., & Sikora, R. A. (2008). Endophytes: an emerging tool for biological control. Biological Control, 46, 1–3. doi: 10.1016/j.biocontrol.2008.03.009.CrossRefGoogle Scholar
  8. Bencheqroun, S. K., Bajji, M., Massart, S., Labhilili, M., El-jafari, S., & Jijakli, M. H. (2007). In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients. Postharvest Biology and Technology, 46, 128–135. doi: 10.1016/j.postharvbio.2007.05.005.CrossRefGoogle Scholar
  9. Bhuiyan, S. A., Ryley, M. J., Galea, V. J., & Tay, D. (2003). Evaluation of potential biocontrol agents against Claviceps africana in vitro and in vivo. Plant Pathology, 52(1), 60–67. doi: 10.1046/j.1365-3059.2003.00799.x.CrossRefGoogle Scholar
  10. Brimner, T., & Boland, G. J. (2003). A review of the non-target effects of fungi used to biologically control plant diseases. Agriculture, Ecosystems & Environment, 100, 3–16. doi: 10.1016/S0167-8809(03)00200-7.CrossRefGoogle Scholar
  11. Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117(3), 237–246. doi: 10.1007/s10658-006-9089-1.CrossRefGoogle Scholar
  12. Castoria, R., De Curtis, F., Lima, G., Caputo, L., Pacifico, S., & De Cicco, V. (2001). Aureobasidium pullulans (LS-30) an antagonist of post-harvest pathogens of fruits: study on its modes of action. Postharvest Biology and Technology, 22, 7–17. doi: 10.1016/s0925-5214(00)00186-1.CrossRefGoogle Scholar
  13. Cook, J., Bruckart, W. L., Coulson, J. R., Goettel, M. S., Humber, R. A., Lumsden, R. D., Maddox, J. V., McManus, M. L., Moore, L., Meyer, S. F., Quimby, P. C., Stack, J. P., & Vaughn, J. L. (1996). Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation. Biological Control, 7, 333–351. doi: 10.1006/bcon.1996.0102.CrossRefGoogle Scholar
  14. Díaz, G., Córcoles, A. I., Asencio, A. D., & Torres, M. P. (2013). In vitro antagonism of Trichoderma and naturally occurring fungi from elms against Ophiostoma novo-ulmi. Forest Pathology, 43, 51–58. doi: 10.1111/j.1439-0329.2012.00792.x.Google Scholar
  15. Diez, J. J., & Alves-Santos, F. (2011). Use of edible ectomycorrhizal fungi to control Fusarium diseases in forest nurseries. In F. Alves-Santos & J. J. Diez (Eds.), Control of Fusarium diseases (pp. 109–130). Kerala: Research Signpost.Google Scholar
  16. DIRECTIVE 2009/128/EC of the European parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Official Journal of the European Union, 24.09.2009, L 309/71–86.Google Scholar
  17. Doğmuş-Lehtijärvi, H. T., Oskay, F., & Lehtijarvi, A. (2012). Susceptibility of Pinus nigra and Cedrus libani to Turkish Gremmeniella abietina isolates. Forest Systems, 21, 306–312. doi: 10.5424/fs/2012212-02251.Google Scholar
  18. Dorworth, C. E. (1979). Influence of inoculum concentration on infection of red pine seedings by Gremmeniella abietina. Phytopathology, 69, 298–300.CrossRefGoogle Scholar
  19. Fernández Martínez, M., Royo, A., Gil Sánchez, L., & Pardos, J. A. (2003). Effects of temperatura on growth and stress hardening development of Phytotron-grown seedlings of aleepo pine (Pinus halepensis Mill.). Annals of Forest Science, 60, 277–284.CrossRefGoogle Scholar
  20. Franceschi, V. R., Krokene, P., Christiansen, E., & Krekling, T. (2005). Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist, 167, 353–75. doi: 10.1111/j.1469-8137.2005.01436.x.CrossRefPubMedGoogle Scholar
  21. Gil, L., Díaz, P., Jiménez, P., Roldán, M., Alía, R., Agúndez, D., De Miguel, J., Martín, S., & Tuero, M. (1996). Las regiones de procedencia de Pinus halepensis Mill. en España. Madrid: Ministerio de Medio Ambiente.Google Scholar
  22. Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273–290. doi: 10.3923/jbs.2010.273.290.CrossRefGoogle Scholar
  23. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, 4–10.
  24. Kaitera, J., & Jalkanen, R. (1992). Disease history of Gremmeniella abietina in a Pinus sylvestris stand. European Journal of Forest Pathology, 22, 371–378. doi: 10.1111/j.1439-0329.1992.tb00309.x.CrossRefGoogle Scholar
  25. Kaitera, J., Müller, M., & Hantula, J. (1998). Occurrence of Gremmeniella abietina var. abietina large- and small-tree types in separate Scots pine stands in Northern Finland and in the Kola Peninsula. Mycological Research, 102, 199–208. doi: 10.1017/S0953756297004589.CrossRefGoogle Scholar
  26. Laflamme, G. (1999). Successful control of Gremmeniella abietina, European race, in a red pine plantation. Phytoprotection, 80, 55–64. doi: 10.7202/706180ar.CrossRefGoogle Scholar
  27. Laflamme, G., & Lachance, D. (1987). Large infection centre of Scleroderris canker (European race) in Quebec province. Plant Disease, 71, 1041–1043. doi: 10.1094/PD-71-1041.CrossRefGoogle Scholar
  28. Lo, C.-T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7, 155–166.Google Scholar
  29. Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology, 73, 56–62. doi: 10.1016/j.postharvbio.2012.05.014.CrossRefGoogle Scholar
  30. Marosy, M., Patton, R. F., & Upper, C. D. (1989). A conducive day concept to explain the effect of low temperature on the development of Scleroderris shoot blight. Phytopathology, 79, 1293–1301.CrossRefGoogle Scholar
  31. Müller, M., Kantola, R., & Kitunen, V. (1994). Combining sterol and fatty acid profiles for the characterization of fungi. Mycological Research, 98, 593–603. doi: 10.1016/S0953-7562(09)80404-8.CrossRefGoogle Scholar
  32. Muñoz, Z., Moret, A., & Garcés, S. (2008). The use of Verticillum dahliae and Diplodia scrobiculata to in-duce resistance in Pinus halepensis against Diplodia pinea infection. European Journal of Plant Pathology, 120, 331–337.CrossRefGoogle Scholar
  33. Ownley, B. H., & Windham, M. T. (2007). Biological control of plant pathogens. In R. Trigiano, M. Windham, & A. Windham (Eds.), Plant pathology: Concepts and laboratory exercises (pp. 423–436). Boca Rotan: Taylor and Francis, CRC Press.Google Scholar
  34. Pal, K. K., & McSpadden Gardener, B. (2006). Biological control of plant pathogens. The Plant Health Instructor. doi: 10.1094/PHI-A-2006-1117-02.Google Scholar
  35. Polashock, J. J., Bedker, P. J., & Hillman, B. I. (1997). Movement of a small mitochondrial double-stranded RNA element of Cryphonectria parasitica: ascospore inheritance and implications for mitochondrial recombination. Molecular Genetics and Genomics, 256, 566–571. doi: 10.1007/s004380050602.CrossRefGoogle Scholar
  36. Puertolas Simon, J., Gil, L., & Pardos, J. A. (2005). Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis Mill.) seedlings assessed by chlorophyll fluorescence. Forestry, 78(5), 501–511. doi: 10.1093/forestry/cpi055.CrossRefGoogle Scholar
  37. R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  38. Ranta, H., Pulkkinen, P., & Neuvonen, S. (2000). Susceptibility of six Scots pine clones to the pathogenic fungus Gremmeniella abietina. Scandinavian Journal of Forest Research, 15, 7–12. doi: 10.1080/02827580050160411.CrossRefGoogle Scholar
  39. Regliński, T., Rodenburg, N., Taylor, J. T., Northcott, G. L., Ah Chee, A., Spiers, T. M., & Hill, R. A. (2012). Trichoderma atroviride promotes growth and enhances systemic resistance to Diplodia pinea in radiata pine (Pinus radiata) seedlings. Forest Pathology, 42, 75–78. doi: 10.1111/j.1439-0329.2010.00710.x.CrossRefGoogle Scholar
  40. Reino, J. L., Guerrero, R. F., Hernández-Galan, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7, 89–123. doi: 10.1007/s11101-006-9032-2.CrossRefGoogle Scholar
  41. Romeralo, C., Santamaría, O., Pando, V., & Diez, J. J. (2015). Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biological Control, 80, 30–39. doi: 10.1016/j.biocontrol.2014.09.010.CrossRefGoogle Scholar
  42. Rühmann, S., Pfeiffer, J., Brunner, P., Szankowski, I., Fischer, T. C., Forkmann, G., & Treutter, D. (2013). Induction of stilbene phytoalexins in grapevine (Vitis vinifera) and transgenic stilbene synthase-apple plants (Malus domestica) by a culture filtrate of Aureobasidium pullulans. Plant Physiology and Biochemistry, 72, 62–71. doi: 10.1016/j.plaphy.2013.03.011.CrossRefPubMedGoogle Scholar
  43. Santamaría, O., Pajares, J. A., & Diez, J. J. (2003). First report of Gremmeniella abietina on Pinus halepensis in Spain. Plant Pathology, 52, 425–425. doi: 10.1046/j.1365-3059.2003.00847.x.CrossRefGoogle Scholar
  44. Santamaría, O., Pando, V., & Diez, J. J. (2006). Susceptibility of six pine species to Gremmeniella abietina in Spain. Forest Pathology, 36, 349–359. doi: 10.1111/j.1439-0329.2006.00463.x.CrossRefGoogle Scholar
  45. Santamaría, O., González, M. A., Pajares, J. A., & Diez, J. J. (2007). Effect of fungicides, endophytes and fungal filtrates on in vitro growth of Spanish isolates of Gremmeniella abietina. Forest Pathology, 37, 251–262. doi: 10.1111/j.1439-0329.2007.00498.x.CrossRefGoogle Scholar
  46. SAS Institute Inc. SAS/STAT®. (2004). User’s guide. version 9.1. Cary: SAS Institute Inc.Google Scholar
  47. Schirmböck, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., Scala, F., Harman, G. E., & Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanism involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60, 4344–4370.Google Scholar
  48. Schoeman, M. W., Webber, J. F., & Dickinson, D. J. (1999). The development of ideas in biological control applied to forest. International Biodeterioration & Biodegradation, 43, 109–123. doi: 10.1016/S0964-8305(99)00037-2.CrossRefGoogle Scholar
  49. Sieber, T. N. (2007). Endophytic fungi of forest trees: are they mutualists? Fungal Biology Reviews, 21, 75–89. doi: 10.1016/j.fbr.2007.05.004.CrossRefGoogle Scholar
  50. Simard, M., Rioux, D., & Laflamme, G. (2001). Formation of ligno-suberized tissues in jack pine resistant to the European race of Gremmeniella abietina. Phytopathology, 91, 1128–1140.CrossRefPubMedGoogle Scholar
  51. Simard, M., Laflamme, G., & Rioux, D. (2013). Enzymatic interactions between Gremmeniella abietina var. abietina, European race, and two resistant hosts, Pinus banksiana and P. contorta. Forest Pathology, 43, 29–41. doi: 10.1111/j.1439-0329.2012.00790.x.CrossRefGoogle Scholar
  52. Skilling, D. D., & Waddell, C. D. (1970). Control of Scleroderris canker by fungicide sprays. The Plant Disease Reporter, 54, 663–665.Google Scholar
  53. Smerlis, E. (1980). Evaluation of fungicides for control of Gremmeniella abietina: III- Results of 1978 field assays. Information Report LAU-X-46. Centre Rech. For. Laurentides, Québec, Canada.Google Scholar
  54. Talibi, I., Boubaker, H., Boudyach, E. H., & Ait Ben Aoumar, A. (2014). Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiolology, 117, 1–17. doi: 10.1111/jam.12495.CrossRefGoogle Scholar
  55. Terho, M., & Uotila, A. (1999). Virulence of two Finnish Gremmeniella abietina types (A and B). European Journal of Forest Pathology, 29, 143–152. doi: 10.1111/j.1439-0329.1999.tb01212.x.Google Scholar
  56. Thor, M., & Stenlid, J. (2005). Heterobasidion annosum infection following mechanized first thinning and stump treatment in Picea abies. Scandinavian Journal of Forest Research, 20, 154–164. doi: 10.1080/02827580510008338.CrossRefGoogle Scholar
  57. Tinus, R. W., Burr, K. E., Atzmon, N., & Riov, J. (2000). Relationship between carbohydrate concentration and root growth potential in coniferous seedlings from three climates during cold hardening and dehardening. Tree Physiology, 20, 1097–1104.CrossRefPubMedGoogle Scholar
  58. Viecelli, C. A., Stangarlin, J. R., Kuhn, O. J., & Schwan-Estrada, K. R. F. (2009). Induction of resistance in beans against Pseudocercospora griseola by culture filtrates of Pycnoporus sanguineus. Tropical Plant Pathology, 34, 87–96. doi: 10.1590/S1982-56762009000200003.CrossRefGoogle Scholar
  59. Vinale, F., Sivasithamparam, K., Ghisalberti, L. E., Marra, R., Woo, L. S., & Lorito, M. (2008). Trichoderma-plant-pathogen interactions. Soil Biology & Biochemistry, 40, 1–10. doi: 10.1016/j.soilbio.2007.07.002.CrossRefGoogle Scholar
  60. Wang, X., Radwan, M. M., Tara, A. H., Gao, J., Wedge, D. E., Rosa, L. H., Cutler, H. G., & Cutler, S. J. (2013). Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. Journal of Agricultural and Food Chemistry, 61, 4551–4555. doi: 10.1021/jf400212y.PubMedCentralCrossRefPubMedGoogle Scholar
  61. Wulff, S., Hansson, P., & Witzell, J. (2006). The applicability of national forest inventories for estimating forest damage outbreaks -experiences from a Gremmeniella outbreak in Sweden. Canadian Journal of Forest Research, 36, 2605–2613. doi: 10.1139/x06-148.CrossRefGoogle Scholar
  62. Yang, D., Laflamme, G., Bernier, L., & Dessureault, M. (1995). Phaeotheca dimorphospora as a potential biocontrol agent for shoot blight caused by Gremmeniella abietina. Canadian Journal of Plant Pathology, 17, 7–12.CrossRefGoogle Scholar
  63. Ylimartimo, A., Laflamme, G., Simard, M., & Rioux, D. (1997). Ultrastructure and cytochemistry of early stages of colonization by Gremmeniella abietina in Pinus resinosa seedlings. Canadian Journal of Botany, 75, 1119–1132. doi: 10.1139/b97-123.CrossRefGoogle Scholar
  64. Yokota, S. (1975). Scleroderris canker of todo-fir in Hokkaido, Northern Japan. III. Dormant infection of the causal fungus. European Journal of Forest Pathology, 5, 7–12. doi: 10.1111/j.1439-0329.1975.tb00928.x.CrossRefGoogle Scholar
  65. Zhang, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2010). Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biological Control, 54, 172–180. doi: 10.1016/j.biocontrol.2010.05.003.CrossRefGoogle Scholar
  66. Zhang, Q., Zhang, J., Yang, L., Zhang, L., Jiang, D., Chen, W., & Li, G. (2014). Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biological Control, 72, 98–108. doi: 10.1016/j.biocontrol.2014.02.018.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  1. 1.Sustainable Forest Management Research InstituteUniversity of Valladolid-INIAPalenciaSpain
  2. 2.Department of Vegetal Production and Forest Resources, Higher Technical School of Agrarian EngineeringUniversity of ValladolidPalenciaSpain
  3. 3.Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
  4. 4.Faculty of Science and Forestry, School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  5. 5.BIOFORGEUniversity of ValladolidValladolidSpain
  6. 6.Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic

Personalised recommendations