European Journal of Plant Pathology

, Volume 143, Issue 4, pp 627–639 | Cite as

The occurrence and pathogenicity of Geosmithia spp. and common blue-stain fungi associated with pine bark beetles in planted forests in Israel

  • Mally Dori-Bachash
  • Liat Avrahami-Moyal
  • Alex Protasov
  • Zvi Mendel
  • Stanley FreemanEmail author


Fungi associated with the bark beetles Orthotomicus erosus, Tomicus destruens and Pityogenes calcaratus were sampled in various pine forests throughout Israel. Three ophiostomatoid fungi, Ophiostoma ips, Graphilbum rectangulosporium and Leptographium wingfieldii, and a fourth non-ophiostomatoid fungus, Geosmithia sp. 24, were identified by using morphological characteristics and molecular genetic analyses. O. ips, the most common fungus, was mainly isolated from O. erosus. The least common fungus, G. rectangulosporium, was frequently isolated from all three studied scolytids, while L. wingfieldii was almost exclusively associated with T. destruens. The fourth fungus, Geosmithia sp. 24, was isolated from both O. erosus and P. calcaratus. This is the first time that an association between O. erosus and a Geosmithia sp. has been reported. Our findings also suggest that Geosmithia sp. 24 can be separated into two distinct sub-groups by molecular analyses. Pathogenicity was demonstrated only for L. wingfieldii, both on Aleppo and brutia pine, exclusively under controlled conditions (25 ± 5 °C) but not at elevated temperatures.


Ophiostoma Graphilbum Leptographium Geosmithia Bark beetle Pine 



We thank Dr. Michal Sharon, Dr. Neta Okon-Levy, Dr. Gunjan Sharma and Marcel Maymon from the Department of Plant Pathology and Weed Research, Agriculture Research Organization, The Volcani Center, Israel, for their advice and technical assistance. We thank Omer Golan from the Keren Kayemeth LeIsrael (KKL) for field work in the forests. We also thank the Rene Karshon foundation for their generous scholarship awarded to MDB. This research was funded by Keren Kayemeth LeIsrael (KKL), project No.132-1606.

Supplementary material

10658_2015_713_MOESM1_ESM.docx (34 kb)
Supplementary Table 1 (DOCX 34 kb)


  1. Ayres, M. P., Wilkens, R. T., Ruel, J. J., Lombardero, M. J., & Vallery, E. (2000). Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology, 81, 2198–2210.CrossRefGoogle Scholar
  2. Barbero, M., Loisel, R., Quezel, P., Richardson, D., & Romane, F. (1998). Pines of the Mediterranean basin. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus (pp. 153–170). Cambridge: Cambridge University Press.Google Scholar
  3. Ben Jamaa, M. L., Lieutier, F., Yart, A., Jerraya, A., & Khouja, M. L. (2007). The virulence of phytopathogenic fungi associated with the bark beetles Tomicus piniperda and Orthotomicus erosus in Tunisia. Forest Pathology, 37, 51–63.CrossRefGoogle Scholar
  4. Benade, E., Wingfield, M. J., & Van Wyk, P. S. (1995). Conidium development in the Hyalorhinocladiella anamorph of Ophiostoma ips. Mycologia, 87, 298–303.CrossRefGoogle Scholar
  5. Campanella, J. J., Bitincka, L., & Smalley, J. (2003). MatGat: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics, 4, 29.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.CrossRefGoogle Scholar
  7. Chambel, M., Climent, J., Pichot, C., & Ducci, F. (2013). Mediterranean pines (Pinus halepensis Mill. and brutia Ten.). In L. E. Pâques (Ed.), Forest tree breeding in Europe (pp. 229–265). Netherlands: Springer.CrossRefGoogle Scholar
  8. De Beer, Z. W., & Wingfield, M. J. (2013). Emerging lineages in the Ophiostomatales. In K. A. Seifert, Z. W. de Beer, & M. J. Wingfield (Eds.), The Ophiostomatoid fungi: Expanding frontiers (pp. 21–46). Utrecht: CBS.Google Scholar
  9. De Beer, Z. W., Seifert, K. A., & Wingfield, M. J. (2013). A nomenclator for ophiostomatoid genera and species in the Ophiostomatales and Microascales. Biodiversity Series, 12, 245–322.Google Scholar
  10. De Beer, Z. W., Duong, T. A., Barnes, I., Wingfield, B. D., & Wingfield, M. J. (2014). Redefining Ceratocystis and allied genera. Studies in Mycology, 79, 187–219.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Dunn, C., Wolfaardt, F., & Wingfield, M. J. (2002). Pathogenicity of Ophiostoma piliferum (Cartapip 97 ®) compared with that of other South African sap-staining fungi: research letter. South African Journal of Science, 98, 401–403.Google Scholar
  12. Fernandez, M. M. F., Garcia, A. E., & Lieutier, F. (2004). Effects of various densities of Ophiostoma ips inoculations on Pinus sylvestris in north‐western Spain. Forest Pathology, 34, 213–223.CrossRefGoogle Scholar
  13. Freeman, S., Pham, M., & Rodriguez, R. J. (1993). Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-rich DNA, and nuclear DNA analyses. Experimental Mycology, 17, 309–322.CrossRefGoogle Scholar
  14. Freeman, S., Sharon, M., Maymon, M., Mendel, Z., Protasov, A., Aoki, T., Eskalen, A., & O’Donnell, K. (2013). Fusarium euwallaceae sp. nov. - a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California. Mycologia, 105, 1595–1606.CrossRefPubMedGoogle Scholar
  15. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for Basidiomycetes - application to the identification of mycorrhiza and rusts. Molecular Ecology, 2, 113–118.CrossRefPubMedGoogle Scholar
  16. Gezer, A. (1986). The sylviculture of Pinus brutia in Turkey. Options Méditerranéennes, 86, 55–66.Google Scholar
  17. Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.PubMedCentralPubMedGoogle Scholar
  18. Gupta, M., & Filner, P. (1991). Microsatellites amplify highly polymorphic DNA bands in SPAR of plant DNA. Proceedings of the International Society of Plant Molecular Biology. Tucson, Arizona, 1705 p.Google Scholar
  19. Harrington, T. C. (2005). Ecology and evolution of mycophagous bark beetles and their fungal partners. In F. E. Vega and M. Blackwell (Eds.), Ecological and Evolutionary Advances in Insect-Fungal Associations (pp. 257–291). Oxford University Press.Google Scholar
  20. Hausner, G., Iranpour, M., Kim, J. J., Breuil, C., Davis, C. N., Gibb, E. A., & Hopkin, A. A. (2005). Fungi vectored by the introduced bark beetle Tomicus piniperda in Ontario, Canada, and comments on the taxonomy of Leptographium lundbergii, Leptographium terebrantis, Leptographium truncatum, and Leptographium wingfieldii. Botany, 83, 1222–1237.Google Scholar
  21. Hofstetter, R. W., Cronin, J. T., Klepzig, K. D., Moser, J. C., & Ayres, M. P. (2006). Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia, 147, 679–691.CrossRefPubMedGoogle Scholar
  22. Hutchison, L. J., & Reid, J. (1988). Taxonomy of some potential wood-staining fungi from New Zealand 1. Ophiostomataceae. New Zealand Journal of Botany, 26, 63–81.CrossRefGoogle Scholar
  23. Hutner, S. H., Provasoli, L., Schatz, A., & Haskins, C. P. (1950). Some approaches to the study of the role of metals in the metabolism of microorganisms. Proceedings of the American Philosophical Society, 94, 152–170.Google Scholar
  24. Jacobs, K., & Wingfield, M. J. (2001). Leptographium species: Tree pathogens, insect associates, and agents of blue-stain. American Phytopathological Society (APS Press).Google Scholar
  25. Jacobs, K., Wingfield, M. J., Coetsee, C., Kirisits, T., & Wingfield, B. D. (2001). Leptographium guttulatum sp. nov., a new species from spruce and pine in Europe. Mycologia, 93, 380–388.CrossRefGoogle Scholar
  26. Jacobs, K., Bergdahl, D. R., Wingfield, M. J., Halik, S., Seifert, K. A., Bright, D. E., & Wingfield, B. D. (2004). Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycological Research, 108, 411–418.CrossRefPubMedGoogle Scholar
  27. Jankowiak, R. (2006). Fungi associated with Tomicus piniperda in Poland and assessment of their virulence using Scots pine seedlings. Annals of Forest Science, 63, 801–808.CrossRefGoogle Scholar
  28. Jankowiak, R. (2012). Ophiostomatoid fungi associated with Ips sexdentatus on Pinus sylvestris in Poland. Dendrobiology, 68, 43–54.Google Scholar
  29. Jankowiak, R., & Bilanski, P. (2007). Fungal flora associated with Tomicus piniperda L. in an area close to a timber yard in southern Poland. Journal of Applied Entomology, 131, 579–584.CrossRefGoogle Scholar
  30. Jankowiak, R., & Bilanski, P. (2013). Association of the pine-infesting Pissodes species with ophiostomatoid fungi in Poland. European Journal of Forest Research, 132, 523–534.CrossRefGoogle Scholar
  31. Jankowiak, R., & Kolarik, M. (2010). Fungi associated with the fir bark beetle Cryphalus piceae in Poland. Forest Pathology, 40, 133–144.CrossRefGoogle Scholar
  32. Jankowiak, R., & Rossa, R. (2008). Associations between Pityogenes bidentatus and fungi in young managed Scots pine stands in Poland. Forest Pathology, 38, 169–177.CrossRefGoogle Scholar
  33. Kerdelhue, C., Roux-Morabito, G., Forichon, J., Chambon, J. M., Robert, A., & Lieutier, F. (2002). Population genetic structure of Tomicus piniperda L. (Curculionidae: Scolytinae) on different pine species and validation of T. destruens (Woll.). Molecular Ecology, 11, 483–494.CrossRefPubMedGoogle Scholar
  34. Kim, S., Harrington, T. C., Lee, J. C., & Seybold, S. J. (2011). Leptographium tereforme sp. nov. and other Ophiostomatales isolated from the root-feeding bark beetle Hylurgus ligniperda in California. Mycologia, 103, 152–163.CrossRefPubMedGoogle Scholar
  35. Kolarik, M., & Jankowiak, R. (2013). Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in central and northeastern Europe. Microbial Ecology, 66, 682–700.CrossRefPubMedGoogle Scholar
  36. Kolarik, M., & Kirkendall, L. R. (2010). Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales). Fungal Biology, 114, 676–689.CrossRefPubMedGoogle Scholar
  37. Kolarik, M., Kostovcik, M., & Pazoutova, S. (2007). Host range and diversity of the genus Geosmithia (Ascomycota: Hypocreales) living in association with bark beetles in the Mediterranean area. Mycological Research, 111, 1298–1310.CrossRefPubMedGoogle Scholar
  38. Kolarik, M., Kubatova, A., Hulcr, J., & Pazoutova, S. (2008). Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe. Microbial Ecology, 55, 65–80.CrossRefPubMedGoogle Scholar
  39. Kolarik, M., Freeland, E., Utley, C., & Tisserat, N. (2011). Geosmithia morbida sp. nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA. Mycologia, 103, 325–332.CrossRefPubMedGoogle Scholar
  40. Krokene, P. (2015). Conifer defense and resistance to bark beetles. In F. E. Vega & R. W. Hofstetter (Eds.), Bark beetles, biology and ecology of native and invasive species (pp. 177–208). San Diego: Elsevier Academic.Google Scholar
  41. Lieutier, F., & Yart, A. (1989). Preferenda thermiques des champignons associés à lps sexdentatus Boern. et Tomicus piniperda L. (Coleoptera: Scolytidae). Annales des Sciences Forestières, 46, 411–415.CrossRefGoogle Scholar
  42. Lieutier, F., Yart, A., & Salle, A. (2009). Stimulation of tree defenses by Ophiostomatoid fungi can explain attack success of bark beetles on conifers. Annals of Forest Science, 66, 801.CrossRefGoogle Scholar
  43. Linnakoski, R., De Beer, Z. W., Ahtiainen, J., Sidorov, E., Niemelä, P., Pappinen, A., & Wingfield, M. J. (2010). Ophiostoma spp. associated with pine-and spruce-infesting bark beetles in Finland and Russia. Persoonia: Molecular Phylogeny and Evolution of Fungi, 25, 72.CrossRefGoogle Scholar
  44. Lu, M., Wingfield, M. J., Gillette, N. E., Mori, S. R., & Sun, J. H. (2010). Complex interactions among host pines and fungi vectored by an invasive bark beetle. New Phytologist, 187, 859–866.CrossRefPubMedGoogle Scholar
  45. Masuya, H., Kaneko, S., Yamaoka, Y., & Osawa, M. (1999). Comparisons of Ophiostomatoid fungi associated with Tomicus piniperda and T. minor in Japanese red pine. Journal of Forest Research, 4, 131–135.CrossRefGoogle Scholar
  46. Mendel, Z. (1987). Major pests of man-made forests in Israel: origin, biology, damage and control. Phytoparasitica, 15, 131–137.CrossRefGoogle Scholar
  47. Mendel, Z. (2000). The phytophagous insect fauna of Pinus halepensis and P. brutia forests in the Mediterranean. In G. Ne’eman & L. Trabaud (Eds.), Ecology, biogeography and management of mediterranean pine forest ecosystems (pp. 217–237). Leiden: Wil R. Peters- Backhuys Publishers.Google Scholar
  48. Mendel, Z., Madar, Z., & Golan, Y. (1985). Comparison of the seasonal occurrence and behavior of seven pine bark beetles (Coleoptera: Scolytidae) in Israel. Phytoparasitica, 13, 21–32.CrossRefGoogle Scholar
  49. Mendel, Z., Boneh, O., & Riov, J. (1992). Some foundations for the application of aggregation pheromone to control pine bark beetles in Israel. Journal of Applied Entomology, 114, 217–227.CrossRefGoogle Scholar
  50. Min, L., Zhou, X. D., De Beer, Z. W., Wingfield, M. J., & Sun, J. H. (2009). Ophiostomatoid fungi associated with the invasive pine-infesting bark beetle, Dendroctonus valens, in China. Fungal Diversity, 38, 133–145.Google Scholar
  51. Nicholas, K. B., Nicholas, H. B., & Deerfield, D. W. (1997). GeneDoc: analysis and visualization of genetic variation. Embnew News, 4, 14.Google Scholar
  52. O’Donnel, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.CrossRefGoogle Scholar
  53. Ohtaka, N., Masuya, H., Yamaoka, Y., & Kaneko, S. (2006). Two new Ophiostoma species lacking conidial states isolated from bark beetles and bark beetle-infested Abies species in Japan. Botany, 84, 282–293.Google Scholar
  54. Peverieri, G. S., Capretti, P., & Tiberi, R. (2006). Associations between Tomicus destruens and Leptographium spp. in Pinus pinea and P. pinaster stands in Tuscany, central Italy. Forest Pathology, 36, 14–20.CrossRefGoogle Scholar
  55. Reay, S. D., Thwaites, J. M., & Farrell, R. L. (2006). Survey of Ophiostomatales associated with Hylurgus ligniperda (Curculionidae: Scolytinae) in New Zealand. New Zealand Entomologist, 29, 21–26.CrossRefGoogle Scholar
  56. Rodriguez, R. J., & Yoder, O. C. (1991). A family of conserved repetitive DNA elements from the fungal plant pathogen Glomerella cingulata (Colletotrichum lindemuthianum). Experimental Mycology, 15, 232–242.CrossRefGoogle Scholar
  57. Romon, P., Zhou, X., Iturrondobeitia, J. C., Wingfield, M. J., & Goldarazena, A. (2007). Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain. Canadian Journal of Microbiology, 53, 756–767.CrossRefPubMedGoogle Scholar
  58. Romon, P., De Beer, Z. W., Fernandez, M., Diez, J., Wingfield, B. D., & Wingfield, M. J. (2014). Ophiostomatoid fungi including two new fungal species associated with pine root-feeding beetles in northern Spain. Antonie Van Leeuwenhoek, 106, 1167–1184.CrossRefPubMedGoogle Scholar
  59. Sharon, M., Freeman, S., Kuninaga, S., & Sneh, B. (2007). Genetic diversity, anastomosis groups and virulence of Rhizoctonia spp. from strawberry. European Journal of Plant Pathology, 117, 247–265.CrossRefGoogle Scholar
  60. Six, D. L., & Wingfield, M. J. (2011). The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annual Review of Entomology, 56, 255–272.CrossRefPubMedGoogle Scholar
  61. Solheim, H., & Langstrom, B. (1991). Blue-stain fungi associated with Tomicus piniperda in Sweden and preliminary observations on their pathogenicity. Annales des Sciences Forestières, 48, 149–156.CrossRefGoogle Scholar
  62. Solheim, H., Langstrom, B., & Hellqvist, C. (1993). Pathogenicity of the blue-stain fungi Leptographium wingfieldii and Ophiostoma minus to Scots pine: effect of tree pruning and inoculum density. Canadian Journal of Forest Research, 23, 1438–1443.CrossRefGoogle Scholar
  63. Solheim, H., Krokene, P., & Langstrom, B. (2001). Effects of growth and virulence of associated blue-stain fungi on host colonization behaviour of the pine shoot beetles Tomicus minor and T. piniperda. Plant Pathology, 50, 111–116.CrossRefGoogle Scholar
  64. Stone, C., & Simpson, J. A. (1990). Species associations in Ips grandicollis galleries in Pinus taeda. New Zealand Journal of Forestry Science, 20, 75–96.Google Scholar
  65. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.PubMedCentralCrossRefPubMedGoogle Scholar
  66. Tisserat, N., Cranshaw, W., Leatherman, D., Utley, C., & Alexander, K. (2009). Black walnut mortality in Colorado caused by the walnut twig beetle and thousand cankers disease. Plant Health Progress Published, 11.Google Scholar
  67. Van der Burgh, J. (1973). Hölzer der niederrheinischen Braunkohlenformation. 2. Hölzer der Braunkohlengruben “Maria Theresia” zu Herzogenrath”,Zukunft West “zu Eschweiler und “Victor” (Zülpich-Mitte) zu Zülpich. Nebst einer systematisch-anatomischen Bearbeitung der Gattung Pinus. Review of Palaeobotany and Palynology, 15, 73–275.CrossRefGoogle Scholar
  68. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). PCR protocols: A guide to methods and applications. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics (pp. 315–322). San Diego: Academic Press, Inc.Google Scholar
  69. Wingfield, M. J., & Gibbs, J. N. (1991). Leptographium and Graphium species associated with pine infesting bark beetles in England. Mycological Research, 95, 1257–1260.CrossRefGoogle Scholar
  70. Zhou, X. D., De Beer, Z. W., Wingfield, B. D., & Wingfield, M. J. (2001). Ophiostomatoid fungi associated with three pine-infesting bark beetles in South Africa. Sydowia, 53, 290–300.Google Scholar
  71. Zhou, X., De Beer, Z. W., Wingfield, B. D., & Wingfield, M. J. (2002). Infection sequence and pathogenicity of Ophiostoma ips, Leptographium serpens and L. lundbergii to pines in South Africa. Fungal Diversity, 10, 229–240.Google Scholar
  72. Zhou, X. D., De Beer, Z. W., Ahumada, R., Wingfield, B. D., & Wingfield, M. J. (2004). Ophiostoma and Ceratocystiopsis spp. associated with two pine-infesting bark beetles in Chile. Fungal Diversity, 15, 261–274.Google Scholar
  73. Zhou, X., Burgess, T. I., De Beer, Z. W., Lieutier, F., Yart, A., Klepzig, K., Carnegie, K., Portales, J. M., Wingfield, B. D., & Wingfield, M. J. (2007). High intercontinental migration rates and population admixture in the sapstain fungus Ophiostoma ips. Molecular Ecology, 16, 89–99.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Mally Dori-Bachash
    • 1
  • Liat Avrahami-Moyal
    • 1
  • Alex Protasov
    • 2
  • Zvi Mendel
    • 2
  • Stanley Freeman
    • 1
    Email author
  1. 1.Department of Plant Pathology and Weed ResearchThe Volcani CenterBet DaganIsrael
  2. 2.Department of Entomology, Agriculture Research OrganizationThe Volcani CenterBet DaganIsrael

Personalised recommendations