European Journal of Plant Pathology

, Volume 143, Issue 2, pp 363–371 | Cite as

Transcriptome profiling of in vitro lines propagated from corm bud tip of elephant foot yam (Amorphophallus paeoniifolius) approves complete potyviruses elimination

  • S. Kamala
  • T. MakeshkumarEmail author


The most characterised Dasheen mosaic virus and many other unreported putative viruses are involved in the mixed viral mosaic infection of elephant foot yam (Amorphophallus paeoniifolius). The in vitro propagation of corm bud tips for virus free plantlet production was carried out in three different culture phases consisting of callusing, shoot regeneration and rooting. A 100 % survival rate was recorded on hardening in sand: soil: coir pith (1:1:1) mixture. A total of 84 % of regenerated plantlets were found to be virus free on indexing of 21 in vitro lines with species specific/genus specific serological and molecular diagnostic techniques. Transcriptome sequencing was carried out for two randomly selected in vitro plants and a mosaic infected field sample. Not any of the known potyviruses were traced in the transcriptome profiles of supposed virus free plants thus confirming the complete potyviruses elimination. Disease symptoms or re-occurrence was not observed in the hardened virus-free lines of the plant.


Corm bud Callus Elephant foot yam RT-PCR Transcriptome profiling Virus free lines 



We acknowledge the Director, ICAR-Central Tuber Crops Research Institute for providing all the facilities to carry out this work. We express our sincere gratitude to Dr. Stephan Winter (DSMZ, Germany) for his supportive suggestions and for kindly providing the antisera for ELISA. The Senior Research Fellowship granted by Council for Scientific and Industrial Research, India to the first author is thankfully acknowledged.

Conflict of interest

The authors declare that they have no competing interests.


  1. Awasthi, L. P., Khan, N. M., Singh, S., & Kumar, P. (2007). Partial characterisation of viruses causing mosaic disease in elephant foot yam (Amorphophallus paeoniifolius Blume). Journal of Root Crops, 33, 109–113.Google Scholar
  2. Babu, B., Hegde, V., Makeshkumar, T., & Jeeva, M. L. (2011). Development of non-radioactive probes for specific detection of Dasheen mosaic virus infecting Amorphophallus paeoniifolius. Current Science, 100(8), 1220–1225.Google Scholar
  3. Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses, 6, 106–136.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Biswas, M. K., Hossain, M., & Islam, R. (2007). Virus free plantlates production of strawberry through meristem culture. World Journal of Agricultural Sciences, 3(6), 757–765.Google Scholar
  5. Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., & Mumford, R. (2014). Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Research, 186, 20–31. doi: 10.1016/j.virusres.2013.12.007.CrossRefPubMedGoogle Scholar
  6. Caboni, E., & Tonelli, M. G. (1999). Effect of 1,2-benzisoxazole-3-acetic acid on adventitious shoot regeneration and in vitro rooting in apple. Plant Cell Tissue and Organ Culture, 18, 985–988.Google Scholar
  7. Clark, M. F., & Adams, A. N. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475–483.CrossRefPubMedGoogle Scholar
  8. Deboever, C., Reid, E. G., Smith, E. N., Wang, X., Dumaop, W., Harismendy, O., et al. (2013). Whole transcriptome sequencing enables discovery and analysis of viruses in archived primary central nervous system lymphomas. PLoS One, 8, e73956.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Fajardo, J., Lutaladio, N. B., Larinde, M., Rosell, C., Barker, I., Roca, W., & Chujoy, E. (2010). Quality declared planting material. Protocols and standards for vegetatively propagated crops. FAO, Italy Rome, 195, 33–35.Google Scholar
  10. Fogaca, C. M., & Fett-Neto, A. G. (2005). Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regulation, 45, 1–10.CrossRefGoogle Scholar
  11. Gasic, K., Hernandez, A., & Korban, S. S. (2004). RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Molecular Biology Reporter, 22, 437a–437g.CrossRefGoogle Scholar
  12. Grisoni, M., Moles, M., Farreyrol, K., Rassaby, L., Davis, R., & Pearson, M. (2006). Identification of Potyviruses infecting vanilla by direct sequencing of a short RT-PCR amplicon. Plant Pathology, 55, 523–529.CrossRefGoogle Scholar
  13. Hartman, R. D. (1974). Dasheen mosaic virus and other phytopathogens eliminated from Caladium, taro and cocoyam by culture of shoot tips. Phytopathology, 64, 237–240.CrossRefGoogle Scholar
  14. Hollings, M. (1965). Disease control through virus-free stock. Annual Review of Phytopathology, 3, 367–396.CrossRefGoogle Scholar
  15. Hu, J. B., & Liu, J. (2008). Morphogenetic pathway in petiole derived callus of Amorphophallus albus in vitro. Acta Physiologiae Plantarum, 30, 389–393.CrossRefGoogle Scholar
  16. Hu, Q., Hollunder, J., Niehl, A., Korner, C. J., Gereige, D., Windels, D., et al. (2011). Specific impact of Tobamavirus infection on the Arabidopsis small RNA profile. PLoS One, 6, e19549.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Irawati, A., Arditti, J., & Nyman, L. P. (1986). In vitro propagation of the elephant yam, Amorphophallus campanulatus Var. hortensis Backer (Araceae). Annals of Botany, 57, 11–17.Google Scholar
  18. Khan, N. M., Aswathi, L. P., & Singh, P. K. (2006). Survey on symptomatology and assessment of yield losses due to viral diseases in elephant foot yam (Amorphophallus paeoniifolius Blume). Journal of Root Crops, 32, 90–93.Google Scholar
  19. Marie-Jeanne, V., Loos, R., Peyre, J., Alliot, B., & Signoret, P. (2000). Differentiation of Poaceae Potyviruses by reverse transcription polymerase chain reaction and restriction analysis. Journal of Phytopathology, 148, 141–151.CrossRefGoogle Scholar
  20. Massart, S., Olmos, A., Jijakli, H., & Candresse, T. (2014). Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Research, 188, 90–96.CrossRefPubMedGoogle Scholar
  21. Mukherjee, A., Naskar, S. K., Misra, R. S., Das, B. B., & Sahoo, B. K. (2001). In vitro propagation of tubercrops: Assessment of axillary shoot proliferation. Journal of Root Crops, 27, 82–88.Google Scholar
  22. Mukherjee, A., Naskar, S. K., Nedunchezhiyan, M., & Rao, K. R. (2009). In vitro propagation of elephant foot yam. Indian Journal of Horticulture, 66(4), 530–533.Google Scholar
  23. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  24. Nagalakshmi, U., Waern, K., & Snyder, M . (2010). RNA-Seq: A Method for Comprehensive Transcriptome Analysis. Current Protocols in Molecular Biology, 4.11.1-4.11.13, Wiley Interscience. doi: 10.1002/0471142727.mb0411s89.
  25. Padmavathi, M., Srinivas, K. P., Hema, M., & Sreenivasulu, P. (2013). First report of Konjac mosaic virus in elephant foot yam (Amorphophallus paeoniifolius) from India. Australasian Plant Disease Notes, 8, 27–29.CrossRefGoogle Scholar
  26. Pandit, M. K., Nath, P. S., Mukhopadhyay, S., Devonshire, B. J., & Jones, P. (2001). First report of Dasheen mosaic virus in Elephant foot yam in India. Plant Pathology, 50, 802.CrossRefGoogle Scholar
  27. Rowhani, A., Maningas, M. A., Lile, L. S., Daubert, S. D., & Golino, D. A. (1995). Development of a detection system for viruses of woody plants based on PCR analysis of immobilized virions. Phytopathology, 85, 347–352.CrossRefGoogle Scholar
  28. Srinivas, T., & Ramanathan, S. (2005). A study on economic analysis ofelephant foot yam production in India. Agricultural Economics Research Review, 18, 241–252.Google Scholar
  29. Venkatram, R., Mani, K., & Saraswathi, T. (2007). Production and Marketing of Elephant Foot Yam in Salem District of Tamil Nadu. Journal of Root Crops, 33(2), 133–137.Google Scholar
  30. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57–63.CrossRefPubMedCentralPubMedGoogle Scholar
  31. Wetzel, T., Candresse, T., Ravelonandro, M., & Dunez, J. (1991). A polymerase chain reaction assay adapted to plum pox potyvirus detection. Journal of Virological Methods, 33, 355–365.CrossRefPubMedGoogle Scholar
  32. Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., et al. (2014). SOAP denovo-trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics, 30(12), 1660–1666.CrossRefPubMedGoogle Scholar
  33. Yasodha, R., Kamala, S., Anand Kumar, S. P., Durai Kumar, P., & Kalaiarasi, K. (2008). Effect of glucose on in vitro rooting of mature plants of Bambusa nutans. Scientia Horticulturae, 116, 113–116.CrossRefGoogle Scholar
  34. Zettler, F. W., & Hartman, R. D. (1987). Dasheen mosaic virus as a pathogen of cultivated aroids and control of the virus by tissue culture. Plant Disease, 71, 958–963.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  1. 1.ICAR-Central Tuber Crops Research InstituteThiruvananthapuramIndia

Personalised recommendations