Skip to main content
Log in

Modelling and mapping potential epidemics of wheat diseases—examples on leaf rust and Septoria tritici blotch using EPIWHEAT

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Policy makers and researchers need to develop long-term priorities using reliable, quantitative tools to assess the risks associated with plant diseases over a range of plant pathogens and over space. EPIWHEAT is a generic simulation model designed to analyse potential disease epidemics in wheat, i.e., epidemics that depend only on the physical environment, and that are not constrained by any disease control. The model is developed on a core structure involving healthy, latent, infectious, and removed sites, and accounts for lesion expansion. It simulates in a simple way host dynamics (growth and senescence). The model involves as few parameters as possible, and a few driving functions. Here, EPIWHEAT is populated with parameters for brown rust (leaf rust; Puccinia triticina) and Septoria tritici blotch (Zymoseptoria tritici). Simulated epidemics are compared to observations at the field, national (France), and European scales. The model appears to represent a sound basis for predicting potential epidemics of wheat foliar diseases at large scales. Areas for model development are documented and discussed. EPIWHEAT appears to provide a simple, generic, transparent, flexible, and reliable platform to modelling potential epidemics caused by leaf pathogens of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alston, J. M., Beddow, J. M., & Pardey, P. G. (2009). Agricultural research, productivity, and food prices in the long run. Science, 325, 1209–1210.

    Article  CAS  PubMed  Google Scholar 

  • Bergamin Filho, A., & Amorim, L. (1996). Doenças de plantas tropicais: epidemiologia e controle econômico. Sao Paulo: Editora Agronômica Ceres Lda.

    Google Scholar 

  • Berger, R. D., Hau, B., Weber, G. E., Bacchi, L. M. A., Bergamin Filho, A., & Amorim, L. (1995). A simulation model to describe epidemics of rust of Phaseolus beans: I. Development of the model and sensitivity analysis. Phytopathology, 85, 715–721.

    Article  Google Scholar 

  • Berger, R. D., Bergamin Filho, A., & Amorim, L. (1997). Lesion expansion as an epidemic component. Phytopathology, 87, 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  • Bockus, W., Bowden, R., Hunger, R., Morrill, W., Murray, T., & Smiley, R. (Eds.). (2010). Compendium of wheat diseases and pests (3rd ed.). St Paul: APS.

    Google Scholar 

  • Bowen, K. L., Teng, P. S., & Roelfs, A. P. (1984). Negative interplot interference in field experiments with leaf rust of wheat. Phytopathology, 74, 1157–1161.

    Article  Google Scholar 

  • Caffi, T., Rossi, V., Legler, S. E., & Bugiani, R. (2011). A mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathology, 60, 522–531.

    Article  Google Scholar 

  • Campbell, L. C., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley.

    Google Scholar 

  • Chamberlain, A. C. (1967). Deposition of particles to natural surfaces. In P. H. Gregory & J. L. Monteith (Eds.), Airborne microbes (pp. 138–164). Cambridge: University Press.

    Google Scholar 

  • Coakley, S. M., McDaniel, L. R., & Shaner, G. (1985). Model for predicting severity of Septoria tritici blotch on winter wheat. Phytopathology, 75, 1245–1251.

    Article  Google Scholar 

  • De Vallavieille-Pope, C., Huber, L., Leconte, M., & Goyeau, H. (1995). Comparative effects of temperature and interrupted wet periods on germination, penetration, and infection of Puccinia recondita f.sp. tritici and P. striiformis on wheat seedlings. Phytopathology, 85, 409–415.

    Article  Google Scholar 

  • Djurle, A., & Yuen, J. E. (1991). A simulation model for Septoria nodorum in winter wheat. Agricultural Systems, 37, 193–218.

    Article  Google Scholar 

  • Duveiller, E., Singh, R. P., & Nicol, J. M. (2007). The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica, 157, 417–430.

    Article  Google Scholar 

  • Duvivier, M., Dedeurwaerder, G., De Proft, M., Moreau, J. M., & Legrève, A. (2013). Real-time PCR quantification and spatio-temporal distribution of airborne inoculum of Mycosphaerella graminicola in Belgium. European Journal of Plant Pathology, 137, 325–341.

    Article  Google Scholar 

  • El Jarroudi, M., Delfosse, P., Maraite, H., Hoffmann, L., & Tychon, B. (2009). Assessing the accuracy of simulation model for Septoria leaf blotch disease progress on winter wheat. Plant Disease, 93, 983–992.

    Article  Google Scholar 

  • Eyal, Z., & Brown, M. B. (1976). A quantitative method for estimating density of Septoria tritici pycnidia on wheat leaves. Phytopathology, 66, 11–14.

    Article  Google Scholar 

  • Goyeau, H., & Lannou, C. (2011). Specific resistance to leaf rust expressed at the seedling stage in cultivars grown in France from 1983 to 2007. Euphytica, 178, 45–62.

    Article  Google Scholar 

  • Goyeau, H., Berder, J., Czerepak, C., Lanen, C., & Lannou, C. (2012). Low diversity and fast evolution in the population of Puccinia triticina causing durum wheat leaf rust in France from 1999 to 2009, as revealed by an adapted differential set. Plant Pathology, 61, 761–772.

    Article  Google Scholar 

  • Groot, J. J. R. (1987). Simulation of nitrogen balance in a system of winter wheat and soil. Simulation Report CABO-TT nr. 13, Wageningen.

  • Hess, D. E., & Shaner, G. (1987a). Effect of moisture on Septoria tritici blotch development in the field. Phytopathology, 77, 220–226.

    Article  Google Scholar 

  • Hess, D. E., & Shaner, G. (1987b). Effect of moisture and temperature on development of Septoria tritici blotch in wheat. Phytopathology, 77, 215–219.

    Article  Google Scholar 

  • Hirst, J. M., & Stedman, O. J. (1963). Dry liberation of fungus spores by rain drops. Journal of General Microbiology, 33, 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Espino, J., Singh, R. P., German, S., McCallum, B. D., Park, R. F., Chen, W. Q., et al. (2011). Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 179, 143–160.

    Article  Google Scholar 

  • Hughes, G., McRoberts, N., & Burnett, F. J. (1999). Decision-making and diagnosis in disease management. Plant Pathology, 48, 147–153.

    Article  Google Scholar 

  • James, C. (1971). A manual of assessment keys for plant diseases. St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Kulkarni, R. N., Chopra, V. L., & Singh, D. (1981). Observed and hypothetical leaf rust progress curves of some genotypes of wheat. Theoretical and Applied Genetics, 60, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Lannou, C., & Savary, S. (1991). The spatial structure of spontaneous epidemics of different diseases in a groundnut plot. Netherlands Journal of Plant Patholology, 97, 355–367.

    Article  Google Scholar 

  • Leffelaar, P. A. (1993). Basic elements of dynamic simulation. In On systems analysis and simulation of ecological processes (pp. 11–27). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Loomis, R. S., & Adams, S. S. (1983). Integrative analysis of host-pathogen relations. Annual Review of Plant Pathology, 21, 341–362.

    Google Scholar 

  • Madden, L. V., & Hugues, G. (1995). Plant disease incidence: distributions, heterogeneity, and temporal analysis. Annual Review of Phytopathology, 33, 529–564.

    Article  CAS  PubMed  Google Scholar 

  • Madden, L. V., Hughes, G., & Van den Bosch, F. (2007). The Study of plant disease epidemics. St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Magboul, A. M., Geng, S., Gilchrist, D. G., & Jackson, L. F. (1992). Environmental influence on the infection of wheat by Mycosphaerella graminicola. Phytopathology, 82, 1407–1413.

    Article  Google Scholar 

  • McRoberts, N., Hughes, G., & Madden, L. V. (1996). Incorporating spatial variability into simple disease progress models for crop pathogens. Aspects of Applied Biology, 46, 1–8.

    Google Scholar 

  • Penning de Vries, F. W. T. (1977). Evaluation of simulation models in agriculture and biology: conclusions of a workshop. Agricultural Systems, 2, 99–107.

    Article  Google Scholar 

  • Penning de Vries, F. W. T., Jansen, D. M., ten Berge, H. F. M., & Bakema, A. (Eds.) (1989). Simulation of ecophysiological processes of growth in several annual crops. Los Baños: IRRI and Wageningen: Pudoc.

  • Pethybridge, S. J., Gent, D. H., Esker, P. D., Turechek, W. W., Hay, F. S., & Nutter, F. W., Jr. (2009). Site-specific risk factors for ray blight in Tasmanian pyrethrum fields. Plant Disease, 93, 229–237.

    Article  Google Scholar 

  • Rabbinge, R., Ward, S. A., & Van Laar, H. H. (Eds.). (1989). Simulation and systems management in crop protection. Wageningen: Pudoc.

    Google Scholar 

  • Räder, T., Racca, P., Jörg, E., & Hau, B. (2007). PUCREC/PUCTRI—a decision support system for the control of leaf rust of winter wheat and winter rye. EPPO Bulletin, 37, 378–382.

    Article  Google Scholar 

  • Rapilly, F. (1983). Effets de quelques facteurs physiques du climat sur diverses séquences épidémiques. EPPO Bulletin, 13, 63–68.

    Article  Google Scholar 

  • Robert, C., Bancal, M. O., & Lannou, C. (2004). Wheat leaf rust uredospore production on adult plants: influence of leaf nitrogen content and Septoria tritici blotch. Phytopathology, 94, 712–721.

    Article  PubMed  Google Scholar 

  • Rossi, V., Racca, P., Jiosuè, S., Pancaldi, D., & Alberti, I. (1997). A simulation model for the development of brown rust epidemics in winter wheat. European Journal of Plant Pathology, 103, 453–465.

    Article  Google Scholar 

  • Savary, S., & Willocquet, L. (2014). Simulation modeling in botanical epidemiology and crop loss analysis. APSnet The Plant Health Instructor. The American Phytopathological Society. http://www.apsnet.org/edcenter/advanced/topics/Pages/default.aspx.

  • Savary, S., De Jong, P. D., Rabbinge, R., & Zadoks, J. C. (1990). Dynamic simulation of groundnut rust, a preliminary model. Agricultural Systems, 32, 113–141.

    Article  Google Scholar 

  • Savary, S., Teng, P. S., Willocquet, L., & Nutter, F. W., Jr. (2006). Quantification and modeling of crop losses: a review of purposes. Annual Review of Phytopathology, 44, 89–112.

    Article  CAS  PubMed  Google Scholar 

  • Savary, S., Nelson, A., Willocquet, L., Pangga, I., & Aunario, J. (2012). Modelling and mapping potential epidemics of rice diseases globally. Crop Protection, 34, 6–17.

    Article  Google Scholar 

  • Scherm, H., & Van Bruggen, A. (1994). Effects of fluctuating temperatures on the latent period of downy mildew (Bremia lactucae). Phytopathology, 84, 853–859.

    Article  Google Scholar 

  • Segarra, J., Jeger, M. J., & Van den Bosch, F. (2001). Epidemic dynamics and patterns of plant diseases. Phytopathology, 91, 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  • Shiferaw, B., Smale, M., Braun, H. J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5, 291–317.

    Article  Google Scholar 

  • Spitters, C. J. T., & Kramer, T. (1985). Changes in relative growth rate with plant ontogeny in spring wheat genotypes grown as isolated plants. Euphytica, 34, 833–847.

    Article  Google Scholar 

  • Spitters, C. J. T., van Keulen, H., & van Kraalingen, D. W. G. (1989). A simple and universal crop growth simulator: SUCROS87. In R. Rabbinge, S. A. Ward, & H. H. van Laar (Eds.), Simulation and systems management in crop protection (pp. 147–181). Wageningen: Pudoc.

    Google Scholar 

  • STELLA® v.9.1, (2008). isee systems, Inc. Wheelock Office Park, 31 Old Etna Road, Suite 7 N, Lebanon, NH 03766 USA, http://www.iseesystems.com/.

  • Suffert, F., Sache, I., & Lannou, C. (2011). Early stages of septoria tritici blotch epidemics of winter wheat: build-up, overseasoning, and release of primary inoculum. Plant Pathology, 60, 166–177.

    Article  Google Scholar 

  • Sun, P., & Zeng, S. (1993). On the measurement of the corrected basic infection rate. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 101, 297–302.

    Google Scholar 

  • Teng, P. S. (1981). Validation of computer models of plant disease epidemics: a review of philosophy and methodology. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 88, 49–63.

    Google Scholar 

  • Teng, P. S. (1985). A comparison of simulation approaches to epidemic modelling. Annual Review of Phytopathology, 23, 351–379.

    Article  Google Scholar 

  • Teng, P. S., Blackie, M. J., & Close, R. C. (1980). Simulation of the barley leaf rust epidemic: structure and evaluation of BARSIM. Agricultural Systems, 5, 85–103.

    Article  Google Scholar 

  • Thomas, M. R., Cook, M. J., & King, J. E. (1989). Factors affecting the development of Septoria tritici in winter wheat and its effect on yield. Plant Pathology, 38, 246–257.

    Article  Google Scholar 

  • Thornley, J. H. M., & France, J. (2007). Mathematical models in agriculture. Oxon, UK and Cambridge: CABI.

    Google Scholar 

  • Tomerlin, J. R., Eversmeyer, M. G., Kramer, C. L., & Browder, L. E. (1983). Temperature and host effects on latent and infectious periods and on urediniospore production of Puccinia recondita f. sp. tritici. Phytopathology, 73, 414–419.

    Article  Google Scholar 

  • Tomerlin, J. R., Eversmeyer, M. G., Kramer, C. L., & Browder, L. E. (1984). Environmental and host effects on colony development on Puccinia recondita f. sp. tritici. Phytopathology, 74, 225–229.

    Article  Google Scholar 

  • Van der Plank, J. E. (1963). Plant diseases epidemics and control. New York: Academic.

    Google Scholar 

  • Waggoner, P. E., & Rich, S. (1981). Lesion distribution, multiple infection, and the logistic increase of plant disease. Proceedings of the National Academy of Sciences USA, 78, 3292–3295.

    Article  CAS  Google Scholar 

  • Wainshilbaum, S. J., & Lipps, P. E. (1991). Effect of temperature and growth stage of wheat on development of leaf and glume blotch caused by Septoria tritici and S. nodorum. Plant Disease, 75, 993–998.

    Article  Google Scholar 

  • Willocquet, L., Aubertot, J. N., Lebard, S., Robert, C., Lannou, C., & Savary, S. (2008). Simulating multiple pest damage in varying winter wheat production situations. Field Crops Research, 107, 12–28.

    Article  Google Scholar 

  • Xu, X. M., & Madden, L. V. (2002). Incidence and density relationships of powdery mildew on apple. Phytopathology, 92, 1005–1014.

    Article  PubMed  Google Scholar 

  • Yang, X. B., & TeBeest, D. O. (1992). Dynamic pathogen distribution and logistic increase of plant disease. Phytopathology, 82, 380–383.

    Google Scholar 

  • Yuen, J. E., & Hughes, G. (2002). Bayesian analysis of plant disease prediction. Plant Pathology, 51, 407–412.

    Article  Google Scholar 

  • Zadoks, J. C. (1971). Systems analysis and the dynamics of epidemics. Phytopathology, 61, 600–610.

    Article  Google Scholar 

  • Zadoks, J. C., & Rijsdijk, F. H. (1984). Atlas of cereal diseases and pests in Europe. Wageningen: Pudoc.

    Google Scholar 

  • Zadoks, J. C., & Schein, R. D. (1979). Epidemiology and plant disease management. New York: Oxford University Press.

    Google Scholar 

  • Zhang, Y., Zhang, Y., Wang, Z., & Wang, Z. (2011). Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Research, 123, 187–195.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Joint Research Centre Monitoring Agricultural ResourceS of the European Commission for providing Interpolated meteorological data at the European scale (JRC-MARS - Meteorological Data Base), and the French ministry for agriculture and fisheries and its partners (ONPV) for accessing the yearly crop health reports for wheat, 2005–2010. We are grateful to anonymous reviewers for their comments which have helped improving the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Savary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savary, S., Stetkiewicz, S., Brun, F. et al. Modelling and mapping potential epidemics of wheat diseases—examples on leaf rust and Septoria tritici blotch using EPIWHEAT. Eur J Plant Pathol 142, 771–790 (2015). https://doi.org/10.1007/s10658-015-0650-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0650-7

Keywords

Navigation