Skip to main content
Log in

Alternatively spliced SMN orthologue in Magnaporthe oryzae is required for stress resistance and disease development

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Survival motor neuron protein (SMN) plays essential roles in cell viability and stress responses in higher eukaryotes. However, little is known about the orthologs in fungi except for the only studied yeast SMN. Here, we identified an S MN-like gene in M agnaporthe o ryzae (MOS). Bioinformatics and Southern blot confirmed that MOS is a single copy located on M. oryzae chromosome. But it was detected to contain three transcript isoforms according to RT-PCR identification. Expression patterns of these transcripts revealed that MOS is associated with stress response and conidiogenesis process in M. oryzae. Disruption mutant and its complemented strain (ΔMOS, ΔMOS/MOS) were genetically created in this study. Through biological comparison, we found that ΔMOS, with no more phenotypic defects except for reduced pigmentation and conidiation, was sensitive to oxidative, osmotic, and nitrogen or carbon-starved stresses, suggesting MOS is required for environmental adaption and basic metabolism. Infection assay further indicated MOS contributed to the development of rice blast. Therefore, we suggest that MOS as a pathogenic gene may be a potential target for reducing disease and implications in crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersson, R. A., Kõiv, V., Norman-Setterblad, C., & Pirhonen, M. (1999). Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. Carotovora. Microbiology, 145, 3547–3556.

    CAS  PubMed  Google Scholar 

  • Briese, M., Esmaeili, B., Fraboulet, S., Burt, E. C., Christodoulou, S., Towers, P. R., et al. (2009). Deletion of smn-1, the Caenorhabditis elegans ortholog of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced lifespan. Human Molecular Genetics, 18, 97–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campion, Y., Neel, H., Gostan, T., Soret, J., & Bordonné, R. (2010). Specific splicing defects in S. pombe carrying a degron allele of the Survival of Motor Neuron gene. EMBO Journal, 29, 1817–1829.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cartegni, L., Hastings, M. L., Calarco, J. A., de Stanchina, E., & Krainer, A. R. (2006). Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. American Journal Human Genetics, 78, 63–77.

    Article  CAS  Google Scholar 

  • Ebbole, D. J. (2007). Magnaporthe as a model for understanding host-pathogen interactions. Annual Review of Phytopathology, 45, 437–456.

    Article  CAS  PubMed  Google Scholar 

  • Gassmann, W. (2008). Alternative splicing in plant defense. In nuclear pre-mRNA processing in plants (pp. 219–233). Springer: Berlin.

    Book  Google Scholar 

  • Graham, G. C., Mayers, P., & Henry, R. (1994). A simplified method for the preparation of fungal genomic DNA for PCR and RAPD analysis. Biotechniques, 16(1), 48–50.

    CAS  PubMed  Google Scholar 

  • Grutzmann, K., Szafranski, K., Pohl, M., Voigt, K., Petzold, A., & Schuster, S. (2014). Fungal alternative splicing is associated with multicellular complexity and virulence: a genome-wide multi-species study[J]. DNA Research, 21, 27–39.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jablonka, S., Holtmann, B., Meister, G., Bandilla, M., Rossoll, W., Fischer, U., & Sendtner, M. (2002). Gene targeting of Gemin2 in mice reveals a correlation between defects in the biogenesis of U snRNPs and motoneuron cell death. Proceedings of the National Academy of Sciences, 99, 10126–10131.

    Article  CAS  Google Scholar 

  • Kadotani, N., Nakayashiki, H., Tosa, Y., & Mayama, S. (2003). RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 16, 769–776.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Ahn, I. P., Rho, H. S., & Lee, Y. H. (2005). MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology, 57, 1224–1237.

    Article  CAS  PubMed  Google Scholar 

  • Kolb, S. J., Battle, D. J., & Dreyfuss, G. (2007). Molecular functions of the SMN complex. Journal of Child Neurology, 22, 990–994.

    Article  PubMed  Google Scholar 

  • Lefebvre, S., Burglen, L., Reboullet, S., Clermont, O., Burlet, P., Viollet, L., et al. (1995). Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80, 155–165.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre, S., Burlet, P., Viollet, L., Bertrandy, S., Huber, C., Belser, C., & Munnich, A. (2002). A novel association of the SMN protein with two major non-ribosomal nucleolar proteins and its implication in spinal muscular atrophy. Human Molecular Genetics, 11, 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Liang, S., Yan, X., Wang, H., Li, D. B., Soanes, D. M., et al. (2010). Characterization of MoLDB1 required for vegetative growth, infection-related morphogenesis, and pathogenicity in the rice blast fungus Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 23, 1260–1274.

    Article  CAS  PubMed  Google Scholar 

  • Lorson, C. L., Hahnen, E., Androphy, E. J., & Wirth, B. (1999). A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proceedings of the National Academy of Sciences, 96, 6307–6311.

    Article  CAS  Google Scholar 

  • Lührmann, R., Kastner, B., & Bach, M. (1990). Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1087(3), 265–292.

    Article  Google Scholar 

  • Mathioni, S. M., Beló, A., Rizzo, C. J., Dean, R. A., & Donofrio, N. M. (2011). Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses. BMC Genomics, 12, 49.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mier, P., & Pérez-Pulido, A. J. (2012). Fungal Smn and Spf30 homologues are mainly present in filamentous fungi and genomes with many introns: implications for spinal muscular atrophy. Gene, 491, 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Monani, U. R., Lorson, C. L., Parsons, D. W., Prior, T. W., Androphy, E. J., Burghes, A. H., & McPherson, J. D. (1999). A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Human Molecular Genetics, 8, 1177–1183.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, C., Usui, K., Aoki, M., Ito, F., Itoh, M., Kai, C., et al. (2007). Gemin2 plays an important role in stabilizing the survival of motor neuron complex. Journal of Biological Chemistry, 282, 11122–11134.

    Article  CAS  PubMed  Google Scholar 

  • Owen, N., Doe, C. L., Mellor, J., & Davies, K. E. (2000). Characterization of the Schizosaccharomyces pombe orthologue of the human survival motor neuron (SMN) protein. Human Molecular Genetics, 9, 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Paushkin, S., Charroux, B., Abel, L., Perkinson, R. A., Pellizzoni, L., & Dreyfuss, G. (2000). The survival motor neuron protein of Schizosacharomyces pombe: conservation of survival motor neuron interaction domains in divergent organisms. The Journal of Biological Chemistry, 275, 23841–23846.

    Article  CAS  PubMed  Google Scholar 

  • Paushkin, S., Gubitz, A. K., Massenet, S., & Dreyfuss, G. (2002). The SMN complex, an assemblyosome of ribonucleoproteins. Current Opinion in Cell Biology, 14, 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Pellizzoni, L., Charroux, B., Rappsilber, J., Mann, M., & Dreyfuss, G. (2001). A functional interaction between the survival motor neuron complex and RNA polymerase II. The Journal of Cell Biology, 152, 75–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pellizzoni, L., Yong, J., & Dreyfuss, G. (2002). Essential role for the SMN complex in the specificity of snRNP assembly. Science, 298, 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  • Rho, H. S., Kang, S., & Lee, Y. H. (2001). Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Molecules and Cells, 12, 407–411.

    CAS  PubMed  Google Scholar 

  • Rigo, F., Hua, Y., Krainer, A. R., & Bennett, C. F. (2012). Antisense-based therapy for the treatment of spinal muscular atrophy. The Journal of Cell Biology, 199, 21–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez-Kessler, M., Baeza-Montanez, L., García-Pedrajas, M. D., Tapia-Moreno, A., Gold, S., Jimenez-Bremont, J. F., & Ruiz-Herrera, J. (2012). Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis. Microbiological Research, 167, 270–282.

    Article  PubMed  Google Scholar 

  • Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual (3rd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Séraphin, B. (1995). Sm and Sm-like proteins belong to a large family: identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs. The EMBO Journal, 14, 2089.

    PubMed Central  PubMed  Google Scholar 

  • Skordis, L. A., Dunckley, M. G., Yue, B., Eperon, I. C., & Muntoni, F. (2003). Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proceedings of the National Academy of Sciences, 100, 4114–4119.

    Article  CAS  Google Scholar 

  • Stump, A. D., Dillon-White, M., & Gu, S. (2013). Molecular evolution of the moonlighting protein SMN in metazoans. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 8, 220–230.

    CAS  Google Scholar 

  • Talbot, N. J. (2003). On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annual Review of Microbiology, 57, 177–202.

    Article  CAS  PubMed  Google Scholar 

  • Talbot, N. J., Ebbole, D. J., & Hamer, J. E. (1993). Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5, 1575–1590.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanabe, N., Yoshimura, K., Kimura, A., Yabuta, Y., & Shigeoka, S. (2007). Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant and Cell Physiology, 48, 1036–1049.

    Article  CAS  PubMed  Google Scholar 

  • Terns, M. P., & Terns, R. M. (2001). Macromolecular complexes: SMN-the master assembler. Current Biology, 11, R862–R864.

    Article  CAS  PubMed  Google Scholar 

  • Torres-Benito, L., Ruiz, R., & Tabares, L. (2012). Synaptic defects in spinal muscular atrophy animal models. Developmental Neurobiology, 72, 126–133.

    Article  CAS  PubMed  Google Scholar 

  • Wan, L., Battle, D. J., Yong, J., Gubitz, A. K., Kolb, S. J., Wang, J., & Dreyfuss, G. (2005). The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Molecular and Cellular Biology, 25, 5543–5551.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, J., & Dreyfuss, G. (2001). Characterization of functional domains of the SMN proteinin vivo. The Journal of Biological Chemistry, 276, 45387–45393.

    Article  CAS  PubMed  Google Scholar 

  • Woldringh, C. L., & van Iterson, W. (1972). Effects of treatment with sodium dodecyl sulfate on the ultrastructure of Escherichia coli. Journal of Bacteriology, 111, 801–813.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, J. R., Urban, M., Sweigard, J. A., & Hamer, J. E. (1997). The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Molecular Plant-Microbe Interactions, 10, 187–194.

    Article  CAS  Google Scholar 

  • Young, P. J., Day, P. M., Zhou, J., Androphy, E. J., Morris, G. E., & Lorson, C. L. (2002). A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. The Journal of Biological Chemistry, 277, 2852–2859.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Zheng, X., & Shen, H. (2012). Targeting RNA-splicing for SMA treatment. Molecules and Cells, 33, 223–228.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zou, T., Yang, X., Pan, D., Huang, J., Sahin, M., & Zhou, J. (2011). SMN deficiency reduces cellular ability to form stress granules, sensitizing cells to stress. Cellular and Molecular Neurobiology, 31, 541–550.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 31171794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 39 kb)

ESM 2

(GIF 22 kb)

High Resolution Image (TIFF 1256 kb)

ESM 3

(GIF 13 kb)

High Resolution Image (TIFF 910 kb)

ESM 4

(GIF 432 kb)

High Resolution Image (TIFF 1461 kb)

ESM 5

(GIF 6 kb)

High Resolution Image (TIFF 334 kb)

ESM 6

(DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, XL., Liu, JL., Liu, SS. et al. Alternatively spliced SMN orthologue in Magnaporthe oryzae is required for stress resistance and disease development. Eur J Plant Pathol 142, 427–439 (2015). https://doi.org/10.1007/s10658-015-0623-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0623-x

Keywords

Navigation