European Journal of Plant Pathology

, Volume 142, Issue 1, pp 185–196 | Cite as

Strong in vitro antagonism by elm xylem endophytes is not accompanied by temporally stable in planta protection against a vascular pathogen under field conditions

  • Juan A. Martín
  • David Macaya-Sanz
  • Johanna Witzell
  • Kathrin Blumenstein
  • Luis Gil


Some endophytic fungi provide their host plants with protection against abiotic and biotic stressors, including pathogens. Endophyte-mediated mechanisms might be behind the environmental resistance shown in the field by some adult Ulmus minor trees to the Dutch elm disease (DED) pathogen, Ophiostoma novo-ulmi. We isolated and characterized seven endophyte fungi from the xylem of three adult U. minor trees that have survived the DED epidemics within areas in Spain ravaged by the disease. The antagonism of the isolated endophytes towards O. novo-ulmi was evaluated in vitro by means of dual culture assays. Six of the studied endophytes hindered the pathogen growth through antibiosis, competition for the substrate, or a combination of both mechanisms. Four of these endophytes were selected for in vivo tests where their protective effect was evaluated in field experiments during three successive years (2011–2013). The conditioning inoculation of two endophytes (Monographella nivalis and Alternaria tennuissima) reduced DED symptoms in 2011 and 2012, respectively. However, the same isolates did not show any prophylactic effect in 2013, which suggests that the repeatability of the treatments is low. A significant treatment × clone interaction was found, showing that the effectiveness of the treatments depended on the tree clone. The future use of endophytes in biocontrol strategies might be oriented towards taking into consideration the whole fungal microbiome in forest breeding programs rather than the external application of particular endophyte strains.


Endophytes Dutch elm disease Ophiostoma novo-ulmi Tree resistance Ulmus 


  1. AEMET (State Meteorology Agency of Spain) (2015). Monthly climate reports. Accessed 7 January 2015.
  2. Albrectsen, B. R., Bjorken, L., Varad, A., Hagner, A., Wedin, M., Karlsson, J., & Jansson, S. (2010). Endophytic fungi in European aspen (Populus tremula) leaves – diversity, detection, and a suggested correlation with herbivory resistance. Fungal Diversity, 41, 17–28.CrossRefGoogle Scholar
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.CrossRefPubMedGoogle Scholar
  4. Aoun, M., Rioux, D., Simard, M., & Bernier, L. (2009). Fungal colonization and host defense reactions in Ulmus americana callus cultures inoculated with Ophiostoma novo-ulmi. Phytopathology, 99, 642–650.CrossRefPubMedGoogle Scholar
  5. Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. PNAS, 100, 15649–15654.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bernier, L., Yang, D., Ouellette, G. B., & Dessureault, M. (1996). Assessment of Phaeotheca dimorphospora for biological control of the Dutch elm disease pathogens, Ophiostoma ulmi and O. novo-ulmi. Plant Pathology, 45, 609–17.CrossRefGoogle Scholar
  7. Blumenstein, K. (2010). Characterization of endophytic fungi in the genus Ulmus: putative agents for the biocontrol of Dutch Elm Disease (DED). Diploma thesis, University of Kassel, 114 p.Google Scholar
  8. Brasier, C. M., & Kirk, S. A. (2010). Rapid emergence of hybrids between two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness. Plant Pathology, 59, 186–199.CrossRefGoogle Scholar
  9. Browne, R. A., & Cooke, B. M. (2004). A new method for producing mycelium-free conidial suspensions from cultures of Microdochium nivale. European Journal of Plant Pathology, 110, 87–90.CrossRefGoogle Scholar
  10. Carroll, G. C. (1988). Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology, 69, 2–9.CrossRefGoogle Scholar
  11. Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20, 2380–2380.CrossRefPubMedCentralPubMedGoogle Scholar
  12. Clay, K. (2004). Fungi and the food of the gods. Nature, 427, 401–402.CrossRefPubMedGoogle Scholar
  13. Eyles, A., Bonello, P., Ganley, R., & Mohammed, C. (2010). Induced resistance to pests and pathogens in trees. New Phytologist, 185, 893–908.CrossRefPubMedGoogle Scholar
  14. Ghelardini, L., Santini, A., Black-Samuelsson, S., Myking, T., & Falusi, M. (2010). Bud dormancy release in elm (Ulmus spp.) clones - a case study of photoperiod and temperature responses. Tree Physiology, 30, 264–74.CrossRefPubMedGoogle Scholar
  15. Gil, L., Fuentes-Utrilla, P., Soto, A., Cervera, M. T., & Collada, C. (2004). English elm is a 2,000-year-old Roman clone. Nature, 431, 1053.CrossRefPubMedGoogle Scholar
  16. Helander, M., Ahlholm, J., Sieber, T. N., Hinneri, S., & Saikkonen, K. (2007). Fragmented environment affects birch leaf endophytes. New Phytologist, 175, 547–553.CrossRefPubMedGoogle Scholar
  17. Hubbes, M. (2004). Induced resistance for the control of Dutch elm disease. Forest Systems, 13, 185–196.Google Scholar
  18. Hubbes, M., & Jeng, R. S. (1981). Aggressiveness of Ceratocystis ulmi strains and induction of resistance in Ulmus americana. European Journal of Forest Pathology, 11, 257–64.CrossRefGoogle Scholar
  19. Jeng, R. S., Alfarenas, A. C., Hubbes, M., & Dumas, M. (1983). Presence and accumulation of fungitoxic substances against Ceratocystis ulmi in Ulmus americana: possible relation to induced resistance. European Journal of Forest Pathology, 13, 239–44.CrossRefGoogle Scholar
  20. Kais, A., Smalley, E., & Riker, A. (1962). Environment and development of Dutch elm disease. Phytopathology, 52, 1191–1196.Google Scholar
  21. Martín, J. A., Solla, A., Buron, M., Lopez-Almansa, J. C., & Gil, L. (2006). Historical, ecological, taxonomic and health characterization of the relict elm stand of Rivas-Vaciamadrid (Madrid). Forest Systems, 15, 208–217.Google Scholar
  22. Martín, J. A., Solla, A., Coimbra, M. A., & Gil, L. (2008a). Metabolic fingerprinting allows discrimination between Ulmus pumila and U. minor, and between U. minor clones of different susceptibility to Dutch elm disease. Forest Pathology, 38, 244–256.CrossRefGoogle Scholar
  23. Martín, J. A., Solla, A., Coimbra, M. A., Domingues, M. R., & Gil, L. (2008b). Exogenous phenol increase resistance of Ulmus minor to Dutch elm disease through formation of suberin-like compounds on xylem tissues. Environmental and Experimental Botany, 64, 97–104.CrossRefGoogle Scholar
  24. Martín, J. A., Solla, A., Esteban, L. G., de Palacios, P., & Gil, L. (2009). Bordered pit and ray morphology involvement in elm resistance to Dutch elm disease. Canadian Journal of Forest Research, 39, 420–429.CrossRefGoogle Scholar
  25. Martín, J. A., Solla, A., Witzell, J., Gil, L., & García-Vallejo, M. C. (2010a). Antifungal effect and reduction of Ulmus minor symptoms to Ophiostoma novo-ulmi by carvacrol and salicylic acid. European Journal of Plant Pathology, 127, 21–32.CrossRefGoogle Scholar
  26. Martín, J. A., Solla, A., Gil, L., & García-Vallejo, M. C. (2010b). Phenological and histochemical changes in Ulmus minor due to root absorption of phenol: implications for resistance to DED. Environmental and Experimental Botany, 69, 175–182.CrossRefGoogle Scholar
  27. Martín, J. A., Witzell, J., Blumenstein, K., Rozpedowska, E., Helander, M., Sieber, T. N., & Gil, L. (2013). Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in elms (Ulmus spp.). Plos One, 8(2), e56987.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Mejía, L. C., Rojas, E. I., Maynard, Z., Van Bael, S., Arnold, A. E., Hebbar, P., Samuels, G. J., Robbins, N., & Herre, E. A. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 46, 4–14.CrossRefGoogle Scholar
  29. Newcombe, G. (2011). Endophytes in forest management: Four challenges. In A. M. Pirttilä & A. C. Frank (Eds.), Endophytes of forest trees: Biology and application . Forestry sciences 80 (pp. 251–262). Berlin / Heidelberg / New York: Springer.CrossRefGoogle Scholar
  30. Ouellette, G. B., Rioux, D., Simard, M., & Cherif, M. (2004). Ultrastructural and cytochemical studies of host and pathogens in some fungal wilt diseases: retro- and introspection towards a better understanding of DED. Forest Systems, 13, 119–145.Google Scholar
  31. Promputtha, I., Lumyong, S., Dhanasekaran, V., Huge, E., McKenzie, C., Hyde, K. D., & Jeewon, R. (2007). A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microbial Ecology, 53, 579–590.CrossRefPubMedGoogle Scholar
  32. Rodríguez, J., Elissetche, J. P., & Valenzuela, S. (2011). Tree endophytes and wood biodegradation. In A. M. Pirttilä & A. C. Frank (Eds.), Endophytes of forest trees: Biology and applications. Forestry sciences 80 (pp. 81–93). Berlin / Heidelberg / New York: Springer.CrossRefGoogle Scholar
  33. Saikkonen, K. (2007). Forest structure and fungal endophytes. Fungal Biology Reviews, 21, 67–74.CrossRefGoogle Scholar
  34. Scheffer, R. J., Elgersma, D. M., De Weger, L. A., & Strobel, G. A. (1989). Pseudomonas for biological control of Dutch elm disease. I. labelling, detection and identification of Pseudomonas isolates injected into elms: comparison of various methods. Netherlands Journal of Plant Pathology, 95, 281–92.CrossRefGoogle Scholar
  35. Scheffer, R. J., Voeten, J. G. W. F., & Guries, R. P. (2008). Biological control of Dutch elm disease. Plant Disease, 92, 192–200.CrossRefGoogle Scholar
  36. Shi, J. L., & Brasier, C. M. (1986). Experiments on the control of Dutch elm disease by injection of Pseudomonas species. European Journal of Forest Pathology, 16, 280–92.CrossRefGoogle Scholar
  37. Solla, A., & Gil, L. (2002). Influence of water stress on Dutch elm disease symptoms in Ulmus minor. Canadian Journal of Botany, 80, 810–817.CrossRefGoogle Scholar
  38. Solla, A., & Gil, L. (2003). Evaluating Verticillium dahliae for biological control of Ophiostoma novo-ulmi in Ulmus minor. Plant Pathology, 52, 579–585.CrossRefGoogle Scholar
  39. Solla, A., Martín, J. A., Ouellette, G., & Gil, L. (2005). Influence of plant age on symptom development in Ulmus minor following inoculation by Ophiostoma novo-ulmi. Plant Disease, 89, 1035–1040.CrossRefGoogle Scholar
  40. Solla, A., Dacasa, M. C., Nasmith, C., Hubbes, M., & Gil, L. (2008). Analysis of Spanish populations of Ophiostoma ulmi and O. novo-ulmi using phenotypic characteristics and RAPD markers. Plant Pathology, 57, 33–44.Google Scholar
  41. Sumarah, M. W., Adams, G. W., Berghout, J., Slack, G. J., Wilson, A. M., & Miller, J. D. (2008). Spread and persistence of a rugulosinproducing endophyte in Picea glauca seedlings. Mycological Research, 112, 731–736.CrossRefPubMedGoogle Scholar
  42. Sutherland, M. L., Pearson, S., & Brasier, C. M. (1997). The influence of temperature and light on defoliation levels of elm by Dutch elm disease. Phytopathology, 87, 576–581.CrossRefPubMedGoogle Scholar
  43. Tchernoff, V. (1965). Methods for screening and for the rapid selection of elms for resistance to Dutch elm disease. Acta Botanica Neerlandica, 14, 409–452.CrossRefGoogle Scholar
  44. Vivas, M., Martín, J. A., Gil, L., & Solla, A. (2012). Evaluating methyl jasmonate for induction of resistance to Fusarium oxysporum, F. circinatum and Ophiostoma novo-ulmi. Forest Systems, 21, 289–299.CrossRefGoogle Scholar
  45. Webber, J. F., & Hedger, J. N. (1986). Comparison of interactions between Ceratocystis ulmi and elm bark saprobes in vitro and in vivo. Transactions of the British Mycological Society, 86, 93–101.CrossRefGoogle Scholar
  46. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. L. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic.CrossRefGoogle Scholar
  47. Yang, D., Plante, F., Bernier, L., Piché, Y., Dessureault, M., Laflamme, G., & Ouellette, G. B. (1993). Evaluation of a fungal antagonist, Phaeotheca dimorphospora, for biological control of tree diseases. Canadian Journal of Botany, 71, 426–433.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Juan A. Martín
    • 1
  • David Macaya-Sanz
    • 1
  • Johanna Witzell
    • 2
    • 3
  • Kathrin Blumenstein
    • 2
  • Luis Gil
    • 1
  1. 1.Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio NaturalUniversidad Politécnica de MadridMadridSpain
  2. 2.Faculty of Forest Sciences, Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
  3. 3.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations