Abstract
Early detection and quantification of Sclerospora graminicola, causal agent of pearl millet downy mildew, from seed, plant and infested soil could help in initiating preventive measures to control the spread of the disease. Two sensitive assays, SgK PCR (conventional PCR) and SgTqK q-PCR (real-time PCR), were developed for the detection of S. graminicola. Both assays were targeted on the 28S region of the nuclear large subunit (nuLSU) of the rDNA cluster. In conventional PCR, the species-specific primers (SgK F/R) amplified a 436 bp product in S. graminicola. TaqMan real-time PCR specifically amplified an 86 bp fragment in diverse DNA samples of S. graminicola obtained from infected seed, root, leaves and infested soil. Both assays did not amplify or produce any fluorescent signal from DNA obtained from other test microbes or from healthy pearl millet leaves. The absolute quantity of target molecules (28S) in the DNA sample obtained from S. graminicola sporangia (6 × 108/ml) was estimated at 25 pg/μl and the copy number was calculated as 2.69 × 108 molecules/μl. The copy number of target molecules in a diploid nucleus (2n) of S. graminicola was estimated to be ~27 molecules/nucleus. This assay can be used as a rapid and efficient detection tool for the identification and diagnosis of S. graminicola, and will be helpful in ensuring safe exchange of S. graminicola-free pearl millet germplasm across borders.
This is a preview of subscription content, access via your institution.



References
Babu, B. K., Srivastava, A. K., Saxena, A. K., & Arora, D. K. (2007). Identification and detection of Macrophomina phaseolina by using species-specific oligonucleotide primers and probe. Mycologia, 99, 733–739.
Babu, B. K., Mesapogu, S., Sharma, A., Reddy, S. S., & Arora, D. K. (2011). Quantitative Real-Time PCR assay for rapid detection of plant and human pathogenic Macrophomina phaseolina from field and environmental samples. Mycologia, 103, 466–473.
Bauer, R., Begerow, D., Oberwinkler, F., Piepenbring, M., & Berbee, M. L. (2001). Ustilaginomycetes. In D. J. McLaughlin, E. G. McLaughlin, & P. A. Lemke (Eds.), The mycota 7 part B-systematics and evolution (pp. 57–83). Berlin: Springer.
Blanco, M. M., & Ristaino, J. B. (2011). Detection and quantification of Peronospora tabacina using a real-time polymerase chain reaction assay. Plant Disease, 95, 673–682.
Braun, U., Cook, R. T. A., Inman, A. J., & Shin, H. D. (2002). The taxonomy of the powdery mildew fungi. In R. R. Bélanger, W. R. Bushnell, A. L. Dik, & T. L. W. Carver (Eds.), The powdery mildews: a comprehensive treatise (pp. 13–55). St. Paul: APS Press.
Bridge, P., & Spooner, B. (2001). Soil fungi: diversity and detection. Plant and Soil, 232, 147–154.
Bustin, S. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25, 169–193.
Chemidlin, P. N., Christen, R., Dequiedt, S., Mougel, C., Lelie’vre, M., Jolivet, C., Shahbazkia, H. R., Guillou, L., Arrouays, D., & Ranjard, L. (2011). Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE, 6(9), e24166.
Crouch, J. A., & Szabo, L. J. (2011). Real-time PCR detection and discrimination of the southern and common corn rust pathogens Puccinia polysora and P. sorghi. Plant Disease, 95, 624–632.
Dombrowski, J. E., Baldwin, J. C., Azevedo, M. D., & Banowetz, G. M. (2006). A sensitive PCR-based assay to detect Neotyphodium fungi in seed and plant tissue of tall fescue and ryegrass species. Crop Science, 46, 1064–1070.
Gachon, C., Mingam, A., & Charrier, B. (2004). Real-time PCR: what relevance to plant studies? Journal of Experimental Botany, 55, 1445–1454.
Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes − application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.
Göker, V. H., Riethmüller, A., & Oberwinkler, F. (2007). How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genetics and Biology, 44, 105–122.
Guzmán-Franco, A. W., Atkins, S. D., Alderson, P. G., & Pell, J. K. (2008). Development of species-specific diagnostic primers for Zoophthora radicans and Pandora blunckii; two co-occurring fungal pathogens of the diamondback moth, Plutella xylostella. Mycological Research, 112, 1227–1240.
Hayden, K., Ivors, K., Wilkinson, C., & Garbelotto, M. (2006). TaqMan chemistry for Phytophthora ramorum detection and quantification, with a comparison of diagnostic methods. Phytopathology, 96, 846–854.
Ioos, R., Fourrier, C., Wilson, V., Webb, K., Schereffer, J. L., & Tourvieille de Labrouhe, D. (2012). An optimized duplex real-time PCR tool for sensitive detection of the quarantine oomycete Plasmopara halstedii in sunflower seeds. Phytopathology, 102, 908–917.
Khairwal, I. S. (2008). Pearl millet Coordinator’s review report. Mandor, Jodhpur: Indian Council of Agricultural Research.
Leonard, K. J., & Szabo, L. J. (2005). Stem rust of small grains and grasses caused by Puccinia graminis. Molecular Plant Pathology, 6, 99–111.
Linde, S., Alexander, I. J., & Anderson, I. C. (2009). Spatial distribution of sporocarps of stipitate hydnoid fungi and their below ground mycelium. FEMS Microbiology Ecology, 69, 344–352.
Malvick, D. K., & Impullitti, A. E. (2007). Detection and quantification of Phialophora gregata in soybean and soil samples with a quantititative, real-time PCR assay. Plant Disease, 91, 736–742.
Mesapogu, S., Babu, B. K., Bakshi, A., Reddy, S. S., & Saxena, S. (2011). Rapid detection and quantification of Fusarium udum in soil and plant samples using real-time PCR. Journal of Plant Pathology & Microbiology, 2, 1–7.
Mogens, N., Skaidre, S., Linda, K. N., Irene, L., Niels, H. S., & Annemarie, F. (2009). Real-time PCR for quantification of eleven individual Fusarium species in cereals. Journal of Microbiological Methods, 76, 234–240.
Mumford, R., Boonham, N., Tomlinson, J., & Barker, I. (2006). Advances in molecular phytodiagnostics–new solutions for old problems. European Journal of Plant Pathology, 116, 1–19.
Parlade, J., Hortal, S., Pera, J., & Galipienso, L. (2007). Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and inter-specific competition. Journal of Biotechnology, 128, 14–23.
Pinnoi, A., Jeewon, R., Sakayaroj, J., Hyde, K. D., & Gareth Jones, E. B. (2007). Berkleasmium crunisia sp. nov. and its phylogenetic affinities to the pleosporales based on 18S and 28S rDNA sequence analyses. Mycologia, 99, 378–384.
Pushpavathi, B., Thakur, R. P., & Rao, C. K. (2006). Fertility and mating type frequency in Indian isolates of Sclerospora graminicola, the downy mildew pathogen of pearl millet. Plant Disease, 90, 211–214.
Raidl, S., Bonfigli, R., & Agerer, R. (2005). Calibration of quantitative real-time TaqMan PCR by correlation with hyphal biomass and ITS copies in mycelia of Piloderma croceum. Plant Biology, 7, 713–717.
Riethmüller, A., Voglmayr, H., Göker, M., Weiß, M., & Oberwinkler, F. (2002). Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia, 94, 834–849.
Sarlin, T., Yli-Mattila, T., Jestoi, M., Rizzo, A., Paavanen-Huhtala, S., & Haikara, A. (2006). Real-time PCR for quantification of toxigenic Fusarium species in barley and malt. European Journal of Plant Pathology, 114, 371–380.
Schaad, N. W., & Frederick, R. D. (2002). Real-time PCR and its application for rapid plant disease diagnostics. Canadian Journal of Plant Pathology, 24, 250–258.
Sharma, R., Rao, V. P., Varshney, R. K., Prasanth, V. P., Kannan, S., & Thakur, R. P. (2010). Characterization of pathogenic and molecular diversity in Sclerospora graminicola, the causal agent of pearl millet downy mildew. Archives of Phytopathology and Plant Protection, 43, 538–551.
Singh, S. D., King, S. B., & Werder, J. (1993). Downy mildew disease of pearl millet. Information Bulletin No. 37. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India.
Steve, R., & Helen, J. S. (2000). Primer3 on the WWW for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics methods and protocols: methods in molecular biology (pp. 365–386). Totowa, New Jersey: Humana Press.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.
Thakur, R. P. (2008). Pearl millet. In S. Lodha, M. Ritu, & B. S. Rathore (Eds.), Disease management in arid land crops (pp. 21–41). Jodhpur, India: Scientific Publishers.
Thakur, R. P., Gunjotikar, G. A., & Rao, V. P. (2010). Safe Movement of ICRISAT’s Seed Crops Germplasm. Information Bulletin No. 81. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India.
Thakur, R. P., Sharma, R., & Rao, V. P. (2011). Screening Techniques for Pearl Millet Diseases. Information Bulletin No. 89. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, Andhra Pradesh, India.
Tooley, P. W., Martin, F. N., Carras, M. M., & Frederick, R. D. (2006). Real-time fluorescent polymerase chain reaction detection of Phytophthora ramorum and Phytophthora pseudosyringae using mitochondrial gene regions. Phytopathology, 96, 336–345.
Tooley, P. W., Carras, M. M., Sechler, A., & Rajasab, A. H. (2010). Real-time PCR detection of sorghum ergot pathogens Claviceps africana, Claviceps sorghi and Claviceps sorghicola. Journal of Phytopathology, 158, 698–704.
Vandemark, G. J., & Ariss, J. J. (2007). Examining interactions between legumes and Aphanomyces euteiches with real-time PCR. Australasian Plant Pathology, 36, 102–108.
Viaud, M., Pasquier, A., & Brygoo, Y. (2000). Diversity of soil fungi studied by PCR-RFLP of ITS. Mycological Research, 104, 1027–1032.
Vilgalys, R., & Gonzalez, D. (1990). Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Current Genetics, 18, 277–280.
Yadav, M. K., Babu, B. K., Saxena, A. K., Singh, B. P., Singh, K., & Arora, D. K. (2011). Real-time PCR assay based on topoisomerase-II gene for detection of Fusarium udum. Mycopathologia, 171, 373–381.
Yan, L., Zhang, C., Ding, L., & Ma, Z. (2008). Development of a real-time PCR assay for the detection of Cladosporium fulvum in tomato leaves. Journal of Applied Microbiology, 104, 1417–1424.
Acknowledgments
We thank Dr Harikishan Sudini, Groundnut Pathology, ICRISAT; Dr S Gopalakrishnan, Biocontrol Lab, ICRISAT and Dr R D Prasad, Directorate of Oilseeds Research, India for providing microbial cultures. We are also thankful to Dr Rajeev Varshney and Dr Mahender Thudi, Applied Genomic Lab, ICRISAT for providing constructive suggestions during this study.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Babu, B.K., Sharma, R. TaqMan real-time PCR assay for the detection and quantification of Sclerospora graminicola, the causal agent of pearl millet downy mildew. Eur J Plant Pathol 142, 149–158 (2015). https://doi.org/10.1007/s10658-015-0599-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10658-015-0599-6
Keywords
- q-PCR
- Species-specific primers
- Downy mildew
- Obligate pathogen
- Sclerospora graminicola