Skip to main content

TaqMan real-time PCR assay for the detection and quantification of Sclerospora graminicola, the causal agent of pearl millet downy mildew

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Early detection and quantification of Sclerospora graminicola, causal agent of pearl millet downy mildew, from seed, plant and infested soil could help in initiating preventive measures to control the spread of the disease. Two sensitive assays, SgK PCR (conventional PCR) and SgTqK q-PCR (real-time PCR), were developed for the detection of S. graminicola. Both assays were targeted on the 28S region of the nuclear large subunit (nuLSU) of the rDNA cluster. In conventional PCR, the species-specific primers (SgK F/R) amplified a 436 bp product in S. graminicola. TaqMan real-time PCR specifically amplified an 86 bp fragment in diverse DNA samples of S. graminicola obtained from infected seed, root, leaves and infested soil. Both assays did not amplify or produce any fluorescent signal from DNA obtained from other test microbes or from healthy pearl millet leaves. The absolute quantity of target molecules (28S) in the DNA sample obtained from S. graminicola sporangia (6 × 108/ml) was estimated at 25 pg/μl and the copy number was calculated as 2.69 × 108 molecules/μl. The copy number of target molecules in a diploid nucleus (2n) of S. graminicola was estimated to be ~27 molecules/nucleus. This assay can be used as a rapid and efficient detection tool for the identification and diagnosis of S. graminicola, and will be helpful in ensuring safe exchange of S. graminicola-free pearl millet germplasm across borders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Babu, B. K., Srivastava, A. K., Saxena, A. K., & Arora, D. K. (2007). Identification and detection of Macrophomina phaseolina by using species-specific oligonucleotide primers and probe. Mycologia, 99, 733–739.

    Article  Google Scholar 

  • Babu, B. K., Mesapogu, S., Sharma, A., Reddy, S. S., & Arora, D. K. (2011). Quantitative Real-Time PCR assay for rapid detection of plant and human pathogenic Macrophomina phaseolina from field and environmental samples. Mycologia, 103, 466–473.

    Article  PubMed  Google Scholar 

  • Bauer, R., Begerow, D., Oberwinkler, F., Piepenbring, M., & Berbee, M. L. (2001). Ustilaginomycetes. In D. J. McLaughlin, E. G. McLaughlin, & P. A. Lemke (Eds.), The mycota 7 part B-systematics and evolution (pp. 57–83). Berlin: Springer.

    Google Scholar 

  • Blanco, M. M., & Ristaino, J. B. (2011). Detection and quantification of Peronospora tabacina using a real-time polymerase chain reaction assay. Plant Disease, 95, 673–682.

    Article  Google Scholar 

  • Braun, U., Cook, R. T. A., Inman, A. J., & Shin, H. D. (2002). The taxonomy of the powdery mildew fungi. In R. R. Bélanger, W. R. Bushnell, A. L. Dik, & T. L. W. Carver (Eds.), The powdery mildews: a comprehensive treatise (pp. 13–55). St. Paul: APS Press.

    Google Scholar 

  • Bridge, P., & Spooner, B. (2001). Soil fungi: diversity and detection. Plant and Soil, 232, 147–154.

    Article  CAS  Google Scholar 

  • Bustin, S. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25, 169–193.

    Article  CAS  PubMed  Google Scholar 

  • Chemidlin, P. N., Christen, R., Dequiedt, S., Mougel, C., Lelie’vre, M., Jolivet, C., Shahbazkia, H. R., Guillou, L., Arrouays, D., & Ranjard, L. (2011). Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE, 6(9), e24166.

  • Crouch, J. A., & Szabo, L. J. (2011). Real-time PCR detection and discrimination of the southern and common corn rust pathogens Puccinia polysora and P. sorghi. Plant Disease, 95, 624–632.

    Article  Google Scholar 

  • Dombrowski, J. E., Baldwin, J. C., Azevedo, M. D., & Banowetz, G. M. (2006). A sensitive PCR-based assay to detect Neotyphodium fungi in seed and plant tissue of tall fescue and ryegrass species. Crop Science, 46, 1064–1070.

    Article  CAS  Google Scholar 

  • Gachon, C., Mingam, A., & Charrier, B. (2004). Real-time PCR: what relevance to plant studies? Journal of Experimental Botany, 55, 1445–1454.

    Article  CAS  PubMed  Google Scholar 

  • Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes − application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Göker, V. H., Riethmüller, A., & Oberwinkler, F. (2007). How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genetics and Biology, 44, 105–122.

    Article  PubMed  Google Scholar 

  • Guzmán-Franco, A. W., Atkins, S. D., Alderson, P. G., & Pell, J. K. (2008). Development of species-specific diagnostic primers for Zoophthora radicans and Pandora blunckii; two co-occurring fungal pathogens of the diamondback moth, Plutella xylostella. Mycological Research, 112, 1227–1240.

    Article  PubMed  Google Scholar 

  • Hayden, K., Ivors, K., Wilkinson, C., & Garbelotto, M. (2006). TaqMan chemistry for Phytophthora ramorum detection and quantification, with a comparison of diagnostic methods. Phytopathology, 96, 846–854.

    Article  CAS  PubMed  Google Scholar 

  • Ioos, R., Fourrier, C., Wilson, V., Webb, K., Schereffer, J. L., & Tourvieille de Labrouhe, D. (2012). An optimized duplex real-time PCR tool for sensitive detection of the quarantine oomycete Plasmopara halstedii in sunflower seeds. Phytopathology, 102, 908–917.

    Article  CAS  PubMed  Google Scholar 

  • Khairwal, I. S. (2008). Pearl millet Coordinator’s review report. Mandor, Jodhpur: Indian Council of Agricultural Research.

    Google Scholar 

  • Leonard, K. J., & Szabo, L. J. (2005). Stem rust of small grains and grasses caused by Puccinia graminis. Molecular Plant Pathology, 6, 99–111.

    Article  PubMed  Google Scholar 

  • Linde, S., Alexander, I. J., & Anderson, I. C. (2009). Spatial distribution of sporocarps of stipitate hydnoid fungi and their below ground mycelium. FEMS Microbiology Ecology, 69, 344–352.

    Article  PubMed  Google Scholar 

  • Malvick, D. K., & Impullitti, A. E. (2007). Detection and quantification of Phialophora gregata in soybean and soil samples with a quantititative, real-time PCR assay. Plant Disease, 91, 736–742.

  • Mesapogu, S., Babu, B. K., Bakshi, A., Reddy, S. S., & Saxena, S. (2011). Rapid detection and quantification of Fusarium udum in soil and plant samples using real-time PCR. Journal of Plant Pathology & Microbiology, 2, 1–7.

    Article  Google Scholar 

  • Mogens, N., Skaidre, S., Linda, K. N., Irene, L., Niels, H. S., & Annemarie, F. (2009). Real-time PCR for quantification of eleven individual Fusarium species in cereals. Journal of Microbiological Methods, 76, 234–240.

    Article  Google Scholar 

  • Mumford, R., Boonham, N., Tomlinson, J., & Barker, I. (2006). Advances in molecular phytodiagnostics–new solutions for old problems. European Journal of Plant Pathology, 116, 1–19.

    Article  CAS  Google Scholar 

  • Parlade, J., Hortal, S., Pera, J., & Galipienso, L. (2007). Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and inter-specific competition. Journal of Biotechnology, 128, 14–23.

    Article  CAS  PubMed  Google Scholar 

  • Pinnoi, A., Jeewon, R., Sakayaroj, J., Hyde, K. D., & Gareth Jones, E. B. (2007). Berkleasmium crunisia sp. nov. and its phylogenetic affinities to the pleosporales based on 18S and 28S rDNA sequence analyses. Mycologia, 99, 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Pushpavathi, B., Thakur, R. P., & Rao, C. K. (2006). Fertility and mating type frequency in Indian isolates of Sclerospora graminicola, the downy mildew pathogen of pearl millet. Plant Disease, 90, 211–214.

    Article  Google Scholar 

  • Raidl, S., Bonfigli, R., & Agerer, R. (2005). Calibration of quantitative real-time TaqMan PCR by correlation with hyphal biomass and ITS copies in mycelia of Piloderma croceum. Plant Biology, 7, 713–717.

    Article  CAS  PubMed  Google Scholar 

  • Riethmüller, A., Voglmayr, H., Göker, M., Weiß, M., & Oberwinkler, F. (2002). Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia, 94, 834–849.

    Article  PubMed  Google Scholar 

  • Sarlin, T., Yli-Mattila, T., Jestoi, M., Rizzo, A., Paavanen-Huhtala, S., & Haikara, A. (2006). Real-time PCR for quantification of toxigenic Fusarium species in barley and malt. European Journal of Plant Pathology, 114, 371–380.

    Article  CAS  Google Scholar 

  • Schaad, N. W., & Frederick, R. D. (2002). Real-time PCR and its application for rapid plant disease diagnostics. Canadian Journal of Plant Pathology, 24, 250–258.

    Article  CAS  Google Scholar 

  • Sharma, R., Rao, V. P., Varshney, R. K., Prasanth, V. P., Kannan, S., & Thakur, R. P. (2010). Characterization of pathogenic and molecular diversity in Sclerospora graminicola, the causal agent of pearl millet downy mildew. Archives of Phytopathology and Plant Protection, 43, 538–551.

    Article  CAS  Google Scholar 

  • Singh, S. D., King, S. B., & Werder, J. (1993). Downy mildew disease of pearl millet. Information Bulletin No. 37. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India.

  • Steve, R., & Helen, J. S. (2000). Primer3 on the WWW for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics methods and protocols: methods in molecular biology (pp. 365–386). Totowa, New Jersey: Humana Press.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thakur, R. P. (2008). Pearl millet. In S. Lodha, M. Ritu, & B. S. Rathore (Eds.), Disease management in arid land crops (pp. 21–41). Jodhpur, India: Scientific Publishers.

    Google Scholar 

  • Thakur, R. P., Gunjotikar, G. A., & Rao, V. P. (2010). Safe Movement of ICRISAT’s Seed Crops Germplasm. Information Bulletin No. 81. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India.

  • Thakur, R. P., Sharma, R., & Rao, V. P. (2011). Screening Techniques for Pearl Millet Diseases. Information Bulletin No. 89. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, Andhra Pradesh, India.

  • Tooley, P. W., Martin, F. N., Carras, M. M., & Frederick, R. D. (2006). Real-time fluorescent polymerase chain reaction detection of Phytophthora ramorum and Phytophthora pseudosyringae using mitochondrial gene regions. Phytopathology, 96, 336–345.

    Article  CAS  PubMed  Google Scholar 

  • Tooley, P. W., Carras, M. M., Sechler, A., & Rajasab, A. H. (2010). Real-time PCR detection of sorghum ergot pathogens Claviceps africana, Claviceps sorghi and Claviceps sorghicola. Journal of Phytopathology, 158, 698–704.

  • Vandemark, G. J., & Ariss, J. J. (2007). Examining interactions between legumes and Aphanomyces euteiches with real-time PCR. Australasian Plant Pathology, 36, 102–108.

  • Viaud, M., Pasquier, A., & Brygoo, Y. (2000). Diversity of soil fungi studied by PCR-RFLP of ITS. Mycological Research, 104, 1027–1032.

    Article  CAS  Google Scholar 

  • Vilgalys, R., & Gonzalez, D. (1990). Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Current Genetics, 18, 277–280.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, M. K., Babu, B. K., Saxena, A. K., Singh, B. P., Singh, K., & Arora, D. K. (2011). Real-time PCR assay based on topoisomerase-II gene for detection of Fusarium udum. Mycopathologia, 171, 373–381.

    Article  PubMed  Google Scholar 

  • Yan, L., Zhang, C., Ding, L., & Ma, Z. (2008). Development of a real-time PCR assay for the detection of Cladosporium fulvum in tomato leaves. Journal of Applied Microbiology, 104, 1417–1424.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Harikishan Sudini, Groundnut Pathology, ICRISAT; Dr S Gopalakrishnan, Biocontrol Lab, ICRISAT and Dr R D Prasad, Directorate of Oilseeds Research, India for providing microbial cultures. We are also thankful to Dr Rajeev Varshney and Dr Mahender Thudi, Applied Genomic Lab, ICRISAT for providing constructive suggestions during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Sharma.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, B.K., Sharma, R. TaqMan real-time PCR assay for the detection and quantification of Sclerospora graminicola, the causal agent of pearl millet downy mildew. Eur J Plant Pathol 142, 149–158 (2015). https://doi.org/10.1007/s10658-015-0599-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0599-6

Keywords

  • q-PCR
  • Species-specific primers
  • Downy mildew
  • Obligate pathogen
  • Sclerospora graminicola