Puccinia komarovii var. glanduliferae var. nov.: a fungal agent for the biological control of Himalayan balsam (Impatiens glandulifera)

Abstract

Clearly defining the taxonomic identity of a potential biocontrol agent is an essential component of any biological control programme. As part of such a programme against Impatiens glandulifera, a highly invasive annual weed in both Europe and North America, the rust fungus Puccinia komarovii was collected on this host plant in its native Himalayan range. However, current literature indicates that P. komarovii is a pathogen of a number of Impatiens species globally and was described originally from I. parviflora, a species native to Asia and now naturalized in Europe. Morphological comparisons, based on urediniospore and teliospore measurements, were generally inconclusive in showing any clear differences between the accession from I. glandulifera and those from other Impatiens species. Both, nrDNA ITS and ITS2-LSU sequence analyses indicated a difference between the rust infecting I. glandulifera compared to accessions on other hosts. However, the large variations in both ITS and 28S (ITS2-LSU) sequences determined within single accessions in this study, makes a clear separation difficult. Cross-inoculation experiments, using one accession of P. komarovii ex I. glandulifera (from India) and two accessions of P. komarovii ex I. parviflora (from China and Hungary), confirmed the specificity of these strains to their original hosts. Two Himalayan Impatiens species, I. scabrida and I. brachycentra, showed varying levels of susceptibility to these rust accessions, where the former was weakly susceptible to all three accessions and the latter was weakly susceptible only to P. komarovii ex I. parviflora (from China). However, commercial cultivars of I. balsamina proved to be fully susceptible to all rust accessions, although this has not been demonstrated under field conditions in India. Based on these host specificity differences between the rust accessions, we propose a new variety: Puccinia komarovii var. glanduliferae var. nov. associated with I. glandulifera in the Himalayas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Afshan, N. S., Khalid, A. N., & Niazi, A. R. (2012). Some new rust fungi (Uredinales) from Fairy Meadows Northern Areas, Pakistan. Journal of Yeast and Fungal Research, 3, 65–73.

    Google Scholar 

  2. Ahmad, S. (1956). Uredinales of West Pakistan. Biologia, 2, 27–101.

    Google Scholar 

  3. Ahmad, S., Iqbal, S. H., & Khalid, A. N., (1997). Fungi of Pakistan. Sultan Ahmad Mycological Society of Pakistan, 248 p.

  4. Aime, M. C. (2006). Toward resolving family-level relationships in rust fungi (Uredinales). Mycoscience, 47, 112–122.

    CAS  Article  Google Scholar 

  5. Alaei, H., De Backer, M., Nuytinck, J., Maes, M., Höfte, M., & Heungens, K. (2009). Phylogenetic relationships of Puccinia horiana and other rust pathogens of Chrysanthemum × morifolium based on rDNA ITS sequence analysis. Mycological Research, 113, 668–683.

    CAS  PubMed  Article  Google Scholar 

  6. Anikster, Y., Szabo, L. J., Eilam, T., Manisterski, J., Koike, S. T., & Bushnell, W. R. (2004). Morphology, life cycle biology, and DNA sequence analysis of rust fungi on garlic and chives from California. Phytopathology, 94, 569–577.

    CAS  PubMed  Article  Google Scholar 

  7. Arthur, J. C., & Cummins, G. B. (1933). Rusts of the Northwest Himalayas. Mycologia, 25, 397–406.

    Article  Google Scholar 

  8. Bacigálová, K., Eliás, P., & Šrobárová, A. (1998). Puccinia komarovii—a rust fungus on Impatiens parviflora in Slovakia. Biologia, 53, 7–13.

    Google Scholar 

  9. Beerling, D. J., & Perrins, J. M. (1993). Impatiens glandulifera Royle (Impatiens roylei Walp.). Journal of Ecology, 81, 367–382.

    Article  Google Scholar 

  10. Berndt, R. (2010). The Puccinia species of Berkheya (Asteraceae) with description of four new species from South Africa. Mycologia, 102, 1437–1449.

    PubMed  Article  Google Scholar 

  11. Blossey, B., & Nötzold, R. (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887–889.

    Article  Google Scholar 

  12. Blumer, S. (1937). In G. V. Buren (Ed.), Concerning two parasitic Fungi on Ornamental Plants. Mitteilungen der Naturforschenden Gesellschaft Bern (pp. 17–25). Bern: Verlag Paul Haupt.

    Google Scholar 

  13. Bruzzese, E., & Hasan, S. (1983). A whole leaf clearing and staining technique for host specificity studies of rust fungi. Plant Pathology, 32, 335–338.

    Article  Google Scholar 

  14. CABI. (2013). Impatiens parviflora [original text by AN author]. In: Invasive species compendium. Wallingford, UK: CAB International. www.cabi.org/isc.

  15. Cockel, C. P., & Tanner, R. A. (2011). Impatiens glandulifera Royle (Himalayan balsam). In R. A. Francis (Ed.), A handbook of global freshwater invasive species (pp. 67–77). London: Earthscan.

    Google Scholar 

  16. Coombe, D. E. (1956). Biological Flora of the British Isles, Impatiens parviflora DC. Journal of Ecology, 44, 701–713.

    Article  Google Scholar 

  17. Dawson, K., Thorpe, R. S., & Malhotra, A. (2010). Estimating genetic variability in non-model taxa: a general procedure for discriminating sequence errors from actual variation. PLoS ONE, 5(12), e15204. doi:10.1371/journal.pone.0015204.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19, 1349.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Ellison, C. A., Evans, H. C., Djeddour, D. H., & Thomas, S. E. (2008). Biology and host range of the rust fungus Puccinia spegazzinii: a new classical biological control agent for the invasive, alien weed Mikania micrantha in Asia. Biological Control, 45, 133–145.

    Article  Google Scholar 

  20. Evans, H. C., & Ellison, C. A. (2005). The biology and taxonomy of rust fungi associated with the neotropical vine Mikania micrantha, a major invasive weed in Asia. Mycologia, 97, 935–947.

    PubMed  Article  Google Scholar 

  21. Evans, H. C., & Tomley, A. J. (1996). Greenhouse and field evaluations of the rubber vine rust, Maravalis cryptostegiae, on Madagascan and Australian Asclepiadaceae. In V. C. Moran & Hoffmann. eds. Proceedings of the IX International Symposium on Biological Control of Weeds (pp. 19–26). Stellenbosch.

  22. Feau, N., Vialle, A., Allaire, M., Maier, W., & Hamelin, R. C. (2011). DNA barcoding in the rust genus Chrysomyxa and its implications for the phylogeny of the genus. Mycologia, 103, 1250–1266.

    PubMed  Article  Google Scholar 

  23. Freire, M. C. M., de Oliveira, L. O., de Almeida, A. M. R., Schuster, I., Moreira, M. A., Liebenberg, M. M., & Mienie, C. M. S. (2008). Evolutionary history of Phakopsora pachyrhizi (the Asian soybean rust) in Brazil based on nucleotide sequences of the internal transcribed spacer region of the nuclear ribosomal DNA. Genetics and Molecular Biology, 31, 920–931.

    CAS  Article  Google Scholar 

  24. Freire, M. C. M., da Silva, M. R., Zhang, X., Almeida, A. M. R., Stacey, G., & de Oliveira, L. O. (2012). Nucleotide polymorphism in the 5.8S nrDNA gene and internal transcribed spacers in Phakopsora pachyrhizi viewed from structural models. Fungal Genetics and Biology, 49, 95–100.

    CAS  PubMed  Article  Google Scholar 

  25. Gaumann, E. (1959). Die Rostpilze Mitteleuropas mit besonderer Berücksichtigung der Schweiz. Band XII, Beiträge zur Kryptogamenflora der Schweiz. Bern: Buchdruckerei Buchler & Co.

    Google Scholar 

  26. Göker, M., García-Blázquez, G., Voglmayr, H., Tellería, M. T., & Martín, M. P. (2009). Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS ONE, 4(7), e6319. doi:10.1371/journal.pone.0006319.

    PubMed Central  PubMed  Article  Google Scholar 

  27. Guindon, S., & Gascuel, O. (2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.

    PubMed  Article  Google Scholar 

  28. Harrington, T. C., & Rizzo, D. M. (1999). Defining species in the fungi, chapter 3. In: J. J. Worrall, (Ed.), Structure and Dynamics of Fungal Populations. Kluwer Press. p 43–71.

  29. Huelsenbeck, J. P., & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.

    CAS  PubMed  Article  Google Scholar 

  30. Hulme, P. E., & Bremner, E. T. (2006). Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. Journal of Applied Ecology, 43, 43–50.

    Article  Google Scholar 

  31. Iqbal, S. H., & Khalid, A. N. (1996). Material for the fungus flora of Pakistan. II. An updated check list of rust fungi (Uredinales) of Pakistan. Sultania, 1, 39–67.

    Google Scholar 

  32. Khuroo, A. A., Reshi, Z. A., Malik, A. H., Weber, E., Rashid, I., & Dar, G. H. (2012). Alien flora of India: taxonomic composition, invasion status and biogeographic affiliations. Biological Invasions, 14, 99–113.

    Article  Google Scholar 

  33. Kiss, L. (2012). Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proceedings of the National Acadamy of Sciences of the United States of America, 109(27), E1811.

    CAS  Article  Google Scholar 

  34. Kovács, G. M., Trappe, J. M., Alsheikh, A. M., Bóka, K., & Elliott, T. F. (2008). Imaia, a new truffle genus to accommodate Terfezia gigantea. Mycologia, 100, 930–939.

    PubMed  Article  Google Scholar 

  35. Kovács, G. M., Balázs, T. K., Calonge, F. D., & Martín, M. P. (2011a). The diversity of Terfezia desert truffles: new species and a highly variable species complex with intrasporocarpic nrDNA ITS heterogeneity. Mycologia, 103, 841–853.

    PubMed  Article  Google Scholar 

  36. Kovács, G. M., Jankovics, T., & Kiss, L. (2011b). Variation in the nrDNA ITS sequences of some powdery mildew species: do routine molecular identification procedures hide valuable information? European Journal of Plant Pathology, 131, 135–141.

    Article  Google Scholar 

  37. Löytynoja, A., & Goldman, N. (2008). An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Acadamy of Sciences of the United States of America, 102, 10557–10562.

    Article  Google Scholar 

  38. Mayrose, M., Kane, N. C., Mayrose, I., Dlugosch, K. M., & Rieseberg, L. H. (2011). Increased growth in sunflower correlates with reduced defenses and altered gene expression in response to biotic and abiotic stress. Molecular Ecology, 20, 4683–4694.

    PubMed  Article  Google Scholar 

  39. Morgan, R. (2007). Impatiens: The vibrant world of busy Lizzies, Balsams, and Touch-Me-Nots (p. 219). Portland: Timber Press.

    Google Scholar 

  40. Nagy, G. L., Kocsubé, S., Csanádi, Z., Kovács, G. M., Petkovics, T., Vágvölgyi, C., & Papp, T. (2012). Re-Mind the gap! Insertion—deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of fungi. PLoS ONE, 7, e49794.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K. H. (2008). Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics Online, 4, 193–201.

    PubMed Central  PubMed  Google Scholar 

  42. Perdomo-Sánchez, O., & Piepenbring, M. (2008). A new species of Puccinia (Pucciniales, Basidiomycota) and new records of rust fungi from Panama. Mycological Progress, 3, 161–168.

    Article  Google Scholar 

  43. Pfunder, M., Schürcha, S., & Roy, B. A. (2001). Sequence variation and geographic distribution of pseudoflower-forming rust fungi (Uromyces pisi s. lat.) on Euphorbia cyparissias. Mycological Research, 105, 57–66.

    CAS  Article  Google Scholar 

  44. Piskorz, R., & Klimko, M. (2006). The effect of Puccinia komarovii Tranzsch. infection on characters of Impatiens parviflora DC. in Galio silvatici-carpinetum (R. tx. 1937) oberd. 1957 forest association. Acta Societatis Botanicorum Poloniae, 75, 51–59.

    Article  Google Scholar 

  45. Pyšek, P., & Prach, K. (1995). Invasion dynamics of Impatiens glandulifera—a century of spreading reconstructed. Biological Conservation, 74, 41–48.

    Article  Google Scholar 

  46. R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

  47. Ree, R. (2008). Gapcode.py 2.1. Distributed by the author at: http://www.reelab.net/home/node/44.

  48. Rodriguez-Saona, C., Vorsa, N., Singh, A. P., Johnson-Cicalese, J., Szendrei, Z., Mescher, M. C., & Frost, C. J. (2011). Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. Journal of Experimental Botany, 62, 2633–2644.

    CAS  PubMed  Article  Google Scholar 

  49. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    CAS  PubMed  Article  Google Scholar 

  50. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Sponge, J., Levesque, C. A., & Chen, W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Acadamy of Sciences of the United States of America, 109, 6241–6246.

    CAS  Article  Google Scholar 

  51. Seier, M. K., Morin, L., Van der Merwe, M., Evans, H. C., & Romero, A. (2009). Are the microcyclic rust species Puccinia melampodii and Puccinia xanthii conspecific? Mycological Research, 113, 1271–1282.

    CAS  PubMed  Article  Google Scholar 

  52. Seifert, K. A., Wingfield, B. D., & Wingfield, M. J. (1995). A critique of DNA sequence analysis in the taxonomy of filamentous Ascomycetes and ascomycetous anamorphs. Canadian Journal of Botany, 73, S760–S767.

    CAS  Article  Google Scholar 

  53. Simmons, M. P., Ochoterena, H., & Carr, T. G. (2001). Incorporation, relative homoplasy and effect of gap characters in sequence-based phylogenetic analyses. Systematic Biology, 50, 454–462.

    CAS  PubMed  Article  Google Scholar 

  54. Simon, U. K., & Weiss, M. (2008). Intragenomic variation of fungal ribosomal genes is higher than previously thought. Molecular Biology and Evolution, 25, 2251–2254.

    CAS  PubMed  Article  Google Scholar 

  55. Staden, R., Beal, K. F., & Bonfield, J. K. (2000). The staden package 1998. Methods in Molecular Biology, 132, 115–130.

    CAS  PubMed  Google Scholar 

  56. Stec-Rouppertowa, W. (1936). Puccinia komarovii Tranzsch. in Polen. Annales Mycologia, 34, 59–60.

    Google Scholar 

  57. Sultan, M. A., Ikram-ul-Haq, Khalid, A. N., & Mukhtar, H. (2006). A contribution to Uredinales of Northern areas of Pakistan. Mycopathologia, 4, 9–11.

    Google Scholar 

  58. Sydow, H. (1935). Einzug einer asiatischen Uredinee (Puccinia komarowi Tranzsch.) in Deutschland. Annales Mycologici, Berlin, 33, 149–208.

    Google Scholar 

  59. Sydow, H., & Sydow, P. (1904). Neue und kritische uredineen. II. Annales Mycologici, 2, 27–31.

    Google Scholar 

  60. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  61. Tanner, R. A., Varia, S., Eschen, R., Wood, S., Murphy, S. T., & Gange, A. C. (2013). Impacts of an invasive non-native annual weed, Impatiens glandulifera, on above- and below-ground invertebrate communities in the United Kingdom. PLoS ONE, 8(6), e67271. doi:10.1371/journal.pone.0067271.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  62. Vanderweyen, A., & Fraiture, A. (2009). Observation de Puccinia komarovii en Belgique. Revue du Cercle de Mycologie de Bruxelles, 9, 52–55.

    Google Scholar 

  63. Virtudazo, E. V., Nakamura, H., & Kakishima, M. (2001). Ribosomal DNA-ITS sequence polymorphism in the sugarcane rust, Puccinia kuehnii. Mycoscience, 42, 447–453.

    CAS  Article  Google Scholar 

  64. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press.

  65. Wilgenbusch, J. C., Warren, D. L., & Swofford, D. L. (2004). AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Website http://ceb.csit.fsu.edu/awty.

  66. Zhuang, J.-Y. (2003). Flora Fungorum Sinicorum. Vol. 19. Uredinales (II). Beijing: Science Press. 324 p.

    Google Scholar 

  67. Zhuang, J.-Y., & Wei, S.-X. (1994). An annotated checklist of rust fungi from the Mt. Qomolangma region (Tibetan Everest Himalaya). Mycosystema, 7, 37–87.

    Google Scholar 

Download references

Acknowledgments

We are very grateful to the Department of Environment, Food and Rural Affairs (DEFRA), the UK Environment Agency, the Scottish Executive, West Country Rivers Trust and Network Rail for funding this research. We would like to thank Dr. Rajesh Kumar (National Fungal Culture Collection of India) and Dr. Usha Dev, Jyoti Bhardwaj (National Bureau of Plant Genetic Resources, India) for assisting in the field collections in the Indian Himalayas. We thank our CABI colleagues in our offices in India and Pakistan, and Dr. PC Agrawal (National Bureau of Plant Genetic Resources, India), for working to facilitate surveys and export of biological material from the Himalaya. We are also grateful to Dr. C. Uma Maheswari and Dr. Nita Mathur (Division of Plant Pathology, Indian Agricultural Research Institute) for the original identification of the rust from Impatiens glandulifera from the Indian Himalayas. We would also like to thank Kate Pollard (CABI) for technical assistance during this research. ZB acknowledges the support of János Bolyai Research Scholarships of the Hungarian Academy of Sciences (MTA).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Robert A. Tanner or Levente Kiss.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanner, R.A., Ellison, C.A., Seier, M.K. et al. Puccinia komarovii var. glanduliferae var. nov.: a fungal agent for the biological control of Himalayan balsam (Impatiens glandulifera). Eur J Plant Pathol 141, 247–266 (2015). https://doi.org/10.1007/s10658-014-0539-x

Download citation

Keywords

  • Cross inoculation studies
  • Invasive weeds
  • ITS and 28S sequence analyses
  • nrDNA variation
  • Rust fungi
  • Taxonomy