Skip to main content
Log in

Puccinia komarovii var. glanduliferae var. nov.: a fungal agent for the biological control of Himalayan balsam (Impatiens glandulifera)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

An Erratum to this article was published on 10 June 2015

Abstract

Clearly defining the taxonomic identity of a potential biocontrol agent is an essential component of any biological control programme. As part of such a programme against Impatiens glandulifera, a highly invasive annual weed in both Europe and North America, the rust fungus Puccinia komarovii was collected on this host plant in its native Himalayan range. However, current literature indicates that P. komarovii is a pathogen of a number of Impatiens species globally and was described originally from I. parviflora, a species native to Asia and now naturalized in Europe. Morphological comparisons, based on urediniospore and teliospore measurements, were generally inconclusive in showing any clear differences between the accession from I. glandulifera and those from other Impatiens species. Both, nrDNA ITS and ITS2-LSU sequence analyses indicated a difference between the rust infecting I. glandulifera compared to accessions on other hosts. However, the large variations in both ITS and 28S (ITS2-LSU) sequences determined within single accessions in this study, makes a clear separation difficult. Cross-inoculation experiments, using one accession of P. komarovii ex I. glandulifera (from India) and two accessions of P. komarovii ex I. parviflora (from China and Hungary), confirmed the specificity of these strains to their original hosts. Two Himalayan Impatiens species, I. scabrida and I. brachycentra, showed varying levels of susceptibility to these rust accessions, where the former was weakly susceptible to all three accessions and the latter was weakly susceptible only to P. komarovii ex I. parviflora (from China). However, commercial cultivars of I. balsamina proved to be fully susceptible to all rust accessions, although this has not been demonstrated under field conditions in India. Based on these host specificity differences between the rust accessions, we propose a new variety: Puccinia komarovii var. glanduliferae var. nov. associated with I. glandulifera in the Himalayas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afshan, N. S., Khalid, A. N., & Niazi, A. R. (2012). Some new rust fungi (Uredinales) from Fairy Meadows Northern Areas, Pakistan. Journal of Yeast and Fungal Research, 3, 65–73.

    Google Scholar 

  • Ahmad, S. (1956). Uredinales of West Pakistan. Biologia, 2, 27–101.

    Google Scholar 

  • Ahmad, S., Iqbal, S. H., & Khalid, A. N., (1997). Fungi of Pakistan. Sultan Ahmad Mycological Society of Pakistan, 248 p.

  • Aime, M. C. (2006). Toward resolving family-level relationships in rust fungi (Uredinales). Mycoscience, 47, 112–122.

    Article  CAS  Google Scholar 

  • Alaei, H., De Backer, M., Nuytinck, J., Maes, M., Höfte, M., & Heungens, K. (2009). Phylogenetic relationships of Puccinia horiana and other rust pathogens of Chrysanthemum × morifolium based on rDNA ITS sequence analysis. Mycological Research, 113, 668–683.

    Article  CAS  PubMed  Google Scholar 

  • Anikster, Y., Szabo, L. J., Eilam, T., Manisterski, J., Koike, S. T., & Bushnell, W. R. (2004). Morphology, life cycle biology, and DNA sequence analysis of rust fungi on garlic and chives from California. Phytopathology, 94, 569–577.

    Article  CAS  PubMed  Google Scholar 

  • Arthur, J. C., & Cummins, G. B. (1933). Rusts of the Northwest Himalayas. Mycologia, 25, 397–406.

    Article  Google Scholar 

  • Bacigálová, K., Eliás, P., & Šrobárová, A. (1998). Puccinia komarovii—a rust fungus on Impatiens parviflora in Slovakia. Biologia, 53, 7–13.

    Google Scholar 

  • Beerling, D. J., & Perrins, J. M. (1993). Impatiens glandulifera Royle (Impatiens roylei Walp.). Journal of Ecology, 81, 367–382.

    Article  Google Scholar 

  • Berndt, R. (2010). The Puccinia species of Berkheya (Asteraceae) with description of four new species from South Africa. Mycologia, 102, 1437–1449.

    Article  PubMed  Google Scholar 

  • Blossey, B., & Nötzold, R. (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887–889.

    Article  Google Scholar 

  • Blumer, S. (1937). In G. V. Buren (Ed.), Concerning two parasitic Fungi on Ornamental Plants. Mitteilungen der Naturforschenden Gesellschaft Bern (pp. 17–25). Bern: Verlag Paul Haupt.

    Google Scholar 

  • Bruzzese, E., & Hasan, S. (1983). A whole leaf clearing and staining technique for host specificity studies of rust fungi. Plant Pathology, 32, 335–338.

    Article  Google Scholar 

  • CABI. (2013). Impatiens parviflora [original text by AN author]. In: Invasive species compendium. Wallingford, UK: CAB International. www.cabi.org/isc.

  • Cockel, C. P., & Tanner, R. A. (2011). Impatiens glandulifera Royle (Himalayan balsam). In R. A. Francis (Ed.), A handbook of global freshwater invasive species (pp. 67–77). London: Earthscan.

    Google Scholar 

  • Coombe, D. E. (1956). Biological Flora of the British Isles, Impatiens parviflora DC. Journal of Ecology, 44, 701–713.

    Article  Google Scholar 

  • Dawson, K., Thorpe, R. S., & Malhotra, A. (2010). Estimating genetic variability in non-model taxa: a general procedure for discriminating sequence errors from actual variation. PLoS ONE, 5(12), e15204. doi:10.1371/journal.pone.0015204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19, 1349.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellison, C. A., Evans, H. C., Djeddour, D. H., & Thomas, S. E. (2008). Biology and host range of the rust fungus Puccinia spegazzinii: a new classical biological control agent for the invasive, alien weed Mikania micrantha in Asia. Biological Control, 45, 133–145.

    Article  Google Scholar 

  • Evans, H. C., & Ellison, C. A. (2005). The biology and taxonomy of rust fungi associated with the neotropical vine Mikania micrantha, a major invasive weed in Asia. Mycologia, 97, 935–947.

    Article  PubMed  Google Scholar 

  • Evans, H. C., & Tomley, A. J. (1996). Greenhouse and field evaluations of the rubber vine rust, Maravalis cryptostegiae, on Madagascan and Australian Asclepiadaceae. In V. C. Moran & Hoffmann. eds. Proceedings of the IX International Symposium on Biological Control of Weeds (pp. 19–26). Stellenbosch.

  • Feau, N., Vialle, A., Allaire, M., Maier, W., & Hamelin, R. C. (2011). DNA barcoding in the rust genus Chrysomyxa and its implications for the phylogeny of the genus. Mycologia, 103, 1250–1266.

    Article  PubMed  Google Scholar 

  • Freire, M. C. M., de Oliveira, L. O., de Almeida, A. M. R., Schuster, I., Moreira, M. A., Liebenberg, M. M., & Mienie, C. M. S. (2008). Evolutionary history of Phakopsora pachyrhizi (the Asian soybean rust) in Brazil based on nucleotide sequences of the internal transcribed spacer region of the nuclear ribosomal DNA. Genetics and Molecular Biology, 31, 920–931.

    Article  CAS  Google Scholar 

  • Freire, M. C. M., da Silva, M. R., Zhang, X., Almeida, A. M. R., Stacey, G., & de Oliveira, L. O. (2012). Nucleotide polymorphism in the 5.8S nrDNA gene and internal transcribed spacers in Phakopsora pachyrhizi viewed from structural models. Fungal Genetics and Biology, 49, 95–100.

    Article  CAS  PubMed  Google Scholar 

  • Gaumann, E. (1959). Die Rostpilze Mitteleuropas mit besonderer Berücksichtigung der Schweiz. Band XII, Beiträge zur Kryptogamenflora der Schweiz. Bern: Buchdruckerei Buchler & Co.

    Google Scholar 

  • Göker, M., García-Blázquez, G., Voglmayr, H., Tellería, M. T., & Martín, M. P. (2009). Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS ONE, 4(7), e6319. doi:10.1371/journal.pone.0006319.

    Article  PubMed Central  PubMed  Google Scholar 

  • Guindon, S., & Gascuel, O. (2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.

    Article  PubMed  Google Scholar 

  • Harrington, T. C., & Rizzo, D. M. (1999). Defining species in the fungi, chapter 3. In: J. J. Worrall, (Ed.), Structure and Dynamics of Fungal Populations. Kluwer Press. p 43–71.

  • Huelsenbeck, J. P., & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Hulme, P. E., & Bremner, E. T. (2006). Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. Journal of Applied Ecology, 43, 43–50.

    Article  Google Scholar 

  • Iqbal, S. H., & Khalid, A. N. (1996). Material for the fungus flora of Pakistan. II. An updated check list of rust fungi (Uredinales) of Pakistan. Sultania, 1, 39–67.

    Google Scholar 

  • Khuroo, A. A., Reshi, Z. A., Malik, A. H., Weber, E., Rashid, I., & Dar, G. H. (2012). Alien flora of India: taxonomic composition, invasion status and biogeographic affiliations. Biological Invasions, 14, 99–113.

    Article  Google Scholar 

  • Kiss, L. (2012). Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proceedings of the National Acadamy of Sciences of the United States of America, 109(27), E1811.

    Article  CAS  Google Scholar 

  • Kovács, G. M., Trappe, J. M., Alsheikh, A. M., Bóka, K., & Elliott, T. F. (2008). Imaia, a new truffle genus to accommodate Terfezia gigantea. Mycologia, 100, 930–939.

    Article  PubMed  Google Scholar 

  • Kovács, G. M., Balázs, T. K., Calonge, F. D., & Martín, M. P. (2011a). The diversity of Terfezia desert truffles: new species and a highly variable species complex with intrasporocarpic nrDNA ITS heterogeneity. Mycologia, 103, 841–853.

    Article  PubMed  Google Scholar 

  • Kovács, G. M., Jankovics, T., & Kiss, L. (2011b). Variation in the nrDNA ITS sequences of some powdery mildew species: do routine molecular identification procedures hide valuable information? European Journal of Plant Pathology, 131, 135–141.

    Article  Google Scholar 

  • Löytynoja, A., & Goldman, N. (2008). An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Acadamy of Sciences of the United States of America, 102, 10557–10562.

    Article  Google Scholar 

  • Mayrose, M., Kane, N. C., Mayrose, I., Dlugosch, K. M., & Rieseberg, L. H. (2011). Increased growth in sunflower correlates with reduced defenses and altered gene expression in response to biotic and abiotic stress. Molecular Ecology, 20, 4683–4694.

    Article  PubMed  Google Scholar 

  • Morgan, R. (2007). Impatiens: The vibrant world of busy Lizzies, Balsams, and Touch-Me-Nots (p. 219). Portland: Timber Press.

    Google Scholar 

  • Nagy, G. L., Kocsubé, S., Csanádi, Z., Kovács, G. M., Petkovics, T., Vágvölgyi, C., & Papp, T. (2012). Re-Mind the gap! Insertion—deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of fungi. PLoS ONE, 7, e49794.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K. H. (2008). Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics Online, 4, 193–201.

    PubMed Central  PubMed  Google Scholar 

  • Perdomo-Sánchez, O., & Piepenbring, M. (2008). A new species of Puccinia (Pucciniales, Basidiomycota) and new records of rust fungi from Panama. Mycological Progress, 3, 161–168.

    Article  Google Scholar 

  • Pfunder, M., Schürcha, S., & Roy, B. A. (2001). Sequence variation and geographic distribution of pseudoflower-forming rust fungi (Uromyces pisi s. lat.) on Euphorbia cyparissias. Mycological Research, 105, 57–66.

    Article  CAS  Google Scholar 

  • Piskorz, R., & Klimko, M. (2006). The effect of Puccinia komarovii Tranzsch. infection on characters of Impatiens parviflora DC. in Galio silvatici-carpinetum (R. tx. 1937) oberd. 1957 forest association. Acta Societatis Botanicorum Poloniae, 75, 51–59.

    Article  Google Scholar 

  • Pyšek, P., & Prach, K. (1995). Invasion dynamics of Impatiens glandulifera—a century of spreading reconstructed. Biological Conservation, 74, 41–48.

    Article  Google Scholar 

  • R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

  • Ree, R. (2008). Gapcode.py 2.1. Distributed by the author at: http://www.reelab.net/home/node/44.

  • Rodriguez-Saona, C., Vorsa, N., Singh, A. P., Johnson-Cicalese, J., Szendrei, Z., Mescher, M. C., & Frost, C. J. (2011). Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. Journal of Experimental Botany, 62, 2633–2644.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Sponge, J., Levesque, C. A., & Chen, W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Acadamy of Sciences of the United States of America, 109, 6241–6246.

    Article  CAS  Google Scholar 

  • Seier, M. K., Morin, L., Van der Merwe, M., Evans, H. C., & Romero, A. (2009). Are the microcyclic rust species Puccinia melampodii and Puccinia xanthii conspecific? Mycological Research, 113, 1271–1282.

    Article  CAS  PubMed  Google Scholar 

  • Seifert, K. A., Wingfield, B. D., & Wingfield, M. J. (1995). A critique of DNA sequence analysis in the taxonomy of filamentous Ascomycetes and ascomycetous anamorphs. Canadian Journal of Botany, 73, S760–S767.

    Article  CAS  Google Scholar 

  • Simmons, M. P., Ochoterena, H., & Carr, T. G. (2001). Incorporation, relative homoplasy and effect of gap characters in sequence-based phylogenetic analyses. Systematic Biology, 50, 454–462.

    Article  CAS  PubMed  Google Scholar 

  • Simon, U. K., & Weiss, M. (2008). Intragenomic variation of fungal ribosomal genes is higher than previously thought. Molecular Biology and Evolution, 25, 2251–2254.

    Article  CAS  PubMed  Google Scholar 

  • Staden, R., Beal, K. F., & Bonfield, J. K. (2000). The staden package 1998. Methods in Molecular Biology, 132, 115–130.

    CAS  PubMed  Google Scholar 

  • Stec-Rouppertowa, W. (1936). Puccinia komarovii Tranzsch. in Polen. Annales Mycologia, 34, 59–60.

    Google Scholar 

  • Sultan, M. A., Ikram-ul-Haq, Khalid, A. N., & Mukhtar, H. (2006). A contribution to Uredinales of Northern areas of Pakistan. Mycopathologia, 4, 9–11.

    Google Scholar 

  • Sydow, H. (1935). Einzug einer asiatischen Uredinee (Puccinia komarowi Tranzsch.) in Deutschland. Annales Mycologici, Berlin, 33, 149–208.

    Google Scholar 

  • Sydow, H., & Sydow, P. (1904). Neue und kritische uredineen. II. Annales Mycologici, 2, 27–31.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanner, R. A., Varia, S., Eschen, R., Wood, S., Murphy, S. T., & Gange, A. C. (2013). Impacts of an invasive non-native annual weed, Impatiens glandulifera, on above- and below-ground invertebrate communities in the United Kingdom. PLoS ONE, 8(6), e67271. doi:10.1371/journal.pone.0067271.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vanderweyen, A., & Fraiture, A. (2009). Observation de Puccinia komarovii en Belgique. Revue du Cercle de Mycologie de Bruxelles, 9, 52–55.

    Google Scholar 

  • Virtudazo, E. V., Nakamura, H., & Kakishima, M. (2001). Ribosomal DNA-ITS sequence polymorphism in the sugarcane rust, Puccinia kuehnii. Mycoscience, 42, 447–453.

    Article  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press.

  • Wilgenbusch, J. C., Warren, D. L., & Swofford, D. L. (2004). AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Website http://ceb.csit.fsu.edu/awty.

  • Zhuang, J.-Y. (2003). Flora Fungorum Sinicorum. Vol. 19. Uredinales (II). Beijing: Science Press. 324 p.

    Google Scholar 

  • Zhuang, J.-Y., & Wei, S.-X. (1994). An annotated checklist of rust fungi from the Mt. Qomolangma region (Tibetan Everest Himalaya). Mycosystema, 7, 37–87.

    Google Scholar 

Download references

Acknowledgments

We are very grateful to the Department of Environment, Food and Rural Affairs (DEFRA), the UK Environment Agency, the Scottish Executive, West Country Rivers Trust and Network Rail for funding this research. We would like to thank Dr. Rajesh Kumar (National Fungal Culture Collection of India) and Dr. Usha Dev, Jyoti Bhardwaj (National Bureau of Plant Genetic Resources, India) for assisting in the field collections in the Indian Himalayas. We thank our CABI colleagues in our offices in India and Pakistan, and Dr. PC Agrawal (National Bureau of Plant Genetic Resources, India), for working to facilitate surveys and export of biological material from the Himalaya. We are also grateful to Dr. C. Uma Maheswari and Dr. Nita Mathur (Division of Plant Pathology, Indian Agricultural Research Institute) for the original identification of the rust from Impatiens glandulifera from the Indian Himalayas. We would also like to thank Kate Pollard (CABI) for technical assistance during this research. ZB acknowledges the support of János Bolyai Research Scholarships of the Hungarian Academy of Sciences (MTA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert A. Tanner or Levente Kiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanner, R.A., Ellison, C.A., Seier, M.K. et al. Puccinia komarovii var. glanduliferae var. nov.: a fungal agent for the biological control of Himalayan balsam (Impatiens glandulifera). Eur J Plant Pathol 141, 247–266 (2015). https://doi.org/10.1007/s10658-014-0539-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0539-x

Keywords

Navigation