Advertisement

European Journal of Plant Pathology

, Volume 141, Issue 2, pp 247–266 | Cite as

Puccinia komarovii var. glanduliferae var. nov.: a fungal agent for the biological control of Himalayan balsam (Impatiens glandulifera)

  • Robert A. Tanner
  • Carol A. Ellison
  • Marion K. Seier
  • Gábor M. Kovács
  • Edit Kassai-Jáger
  • Zsolt Berecky
  • Sonal Varia
  • Djami Djeddour
  • Mool Chand Singh
  • Ágnes Csiszár
  • Péter Csontos
  • Levente Kiss
  • Harry C. Evans
Article

Abstract

Clearly defining the taxonomic identity of a potential biocontrol agent is an essential component of any biological control programme. As part of such a programme against Impatiens glandulifera, a highly invasive annual weed in both Europe and North America, the rust fungus Puccinia komarovii was collected on this host plant in its native Himalayan range. However, current literature indicates that P. komarovii is a pathogen of a number of Impatiens species globally and was described originally from I. parviflora, a species native to Asia and now naturalized in Europe. Morphological comparisons, based on urediniospore and teliospore measurements, were generally inconclusive in showing any clear differences between the accession from I. glandulifera and those from other Impatiens species. Both, nrDNA ITS and ITS2-LSU sequence analyses indicated a difference between the rust infecting I. glandulifera compared to accessions on other hosts. However, the large variations in both ITS and 28S (ITS2-LSU) sequences determined within single accessions in this study, makes a clear separation difficult. Cross-inoculation experiments, using one accession of P. komarovii ex I. glandulifera (from India) and two accessions of P. komarovii ex I. parviflora (from China and Hungary), confirmed the specificity of these strains to their original hosts. Two Himalayan Impatiens species, I. scabrida and I. brachycentra, showed varying levels of susceptibility to these rust accessions, where the former was weakly susceptible to all three accessions and the latter was weakly susceptible only to P. komarovii ex I. parviflora (from China). However, commercial cultivars of I. balsamina proved to be fully susceptible to all rust accessions, although this has not been demonstrated under field conditions in India. Based on these host specificity differences between the rust accessions, we propose a new variety: Puccinia komarovii var. glanduliferae var. nov. associated with I. glandulifera in the Himalayas.

Keywords

Cross inoculation studies Invasive weeds ITS and 28S sequence analyses nrDNA variation Rust fungi Taxonomy 

Notes

Acknowledgments

We are very grateful to the Department of Environment, Food and Rural Affairs (DEFRA), the UK Environment Agency, the Scottish Executive, West Country Rivers Trust and Network Rail for funding this research. We would like to thank Dr. Rajesh Kumar (National Fungal Culture Collection of India) and Dr. Usha Dev, Jyoti Bhardwaj (National Bureau of Plant Genetic Resources, India) for assisting in the field collections in the Indian Himalayas. We thank our CABI colleagues in our offices in India and Pakistan, and Dr. PC Agrawal (National Bureau of Plant Genetic Resources, India), for working to facilitate surveys and export of biological material from the Himalaya. We are also grateful to Dr. C. Uma Maheswari and Dr. Nita Mathur (Division of Plant Pathology, Indian Agricultural Research Institute) for the original identification of the rust from Impatiens glandulifera from the Indian Himalayas. We would also like to thank Kate Pollard (CABI) for technical assistance during this research. ZB acknowledges the support of János Bolyai Research Scholarships of the Hungarian Academy of Sciences (MTA).

References

  1. Afshan, N. S., Khalid, A. N., & Niazi, A. R. (2012). Some new rust fungi (Uredinales) from Fairy Meadows Northern Areas, Pakistan. Journal of Yeast and Fungal Research, 3, 65–73.Google Scholar
  2. Ahmad, S. (1956). Uredinales of West Pakistan. Biologia, 2, 27–101.Google Scholar
  3. Ahmad, S., Iqbal, S. H., & Khalid, A. N., (1997). Fungi of Pakistan. Sultan Ahmad Mycological Society of Pakistan, 248 p.Google Scholar
  4. Aime, M. C. (2006). Toward resolving family-level relationships in rust fungi (Uredinales). Mycoscience, 47, 112–122.CrossRefGoogle Scholar
  5. Alaei, H., De Backer, M., Nuytinck, J., Maes, M., Höfte, M., & Heungens, K. (2009). Phylogenetic relationships of Puccinia horiana and other rust pathogens of Chrysanthemum × morifolium based on rDNA ITS sequence analysis. Mycological Research, 113, 668–683.PubMedCrossRefGoogle Scholar
  6. Anikster, Y., Szabo, L. J., Eilam, T., Manisterski, J., Koike, S. T., & Bushnell, W. R. (2004). Morphology, life cycle biology, and DNA sequence analysis of rust fungi on garlic and chives from California. Phytopathology, 94, 569–577.PubMedCrossRefGoogle Scholar
  7. Arthur, J. C., & Cummins, G. B. (1933). Rusts of the Northwest Himalayas. Mycologia, 25, 397–406.CrossRefGoogle Scholar
  8. Bacigálová, K., Eliás, P., & Šrobárová, A. (1998). Puccinia komarovii—a rust fungus on Impatiens parviflora in Slovakia. Biologia, 53, 7–13.Google Scholar
  9. Beerling, D. J., & Perrins, J. M. (1993). Impatiens glandulifera Royle (Impatiens roylei Walp.). Journal of Ecology, 81, 367–382.CrossRefGoogle Scholar
  10. Berndt, R. (2010). The Puccinia species of Berkheya (Asteraceae) with description of four new species from South Africa. Mycologia, 102, 1437–1449.PubMedCrossRefGoogle Scholar
  11. Blossey, B., & Nötzold, R. (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887–889.CrossRefGoogle Scholar
  12. Blumer, S. (1937). In G. V. Buren (Ed.), Concerning two parasitic Fungi on Ornamental Plants. Mitteilungen der Naturforschenden Gesellschaft Bern (pp. 17–25). Bern: Verlag Paul Haupt.Google Scholar
  13. Bruzzese, E., & Hasan, S. (1983). A whole leaf clearing and staining technique for host specificity studies of rust fungi. Plant Pathology, 32, 335–338.CrossRefGoogle Scholar
  14. CABI. (2013). Impatiens parviflora [original text by AN author]. In: Invasive species compendium. Wallingford, UK: CAB International. www.cabi.org/isc.
  15. Cockel, C. P., & Tanner, R. A. (2011). Impatiens glandulifera Royle (Himalayan balsam). In R. A. Francis (Ed.), A handbook of global freshwater invasive species (pp. 67–77). London: Earthscan.Google Scholar
  16. Coombe, D. E. (1956). Biological Flora of the British Isles, Impatiens parviflora DC. Journal of Ecology, 44, 701–713.CrossRefGoogle Scholar
  17. Dawson, K., Thorpe, R. S., & Malhotra, A. (2010). Estimating genetic variability in non-model taxa: a general procedure for discriminating sequence errors from actual variation. PLoS ONE, 5(12), e15204. doi: 10.1371/journal.pone.0015204.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19, 1349.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Ellison, C. A., Evans, H. C., Djeddour, D. H., & Thomas, S. E. (2008). Biology and host range of the rust fungus Puccinia spegazzinii: a new classical biological control agent for the invasive, alien weed Mikania micrantha in Asia. Biological Control, 45, 133–145.CrossRefGoogle Scholar
  20. Evans, H. C., & Ellison, C. A. (2005). The biology and taxonomy of rust fungi associated with the neotropical vine Mikania micrantha, a major invasive weed in Asia. Mycologia, 97, 935–947.PubMedCrossRefGoogle Scholar
  21. Evans, H. C., & Tomley, A. J. (1996). Greenhouse and field evaluations of the rubber vine rust, Maravalis cryptostegiae, on Madagascan and Australian Asclepiadaceae. In V. C. Moran & Hoffmann. eds. Proceedings of the IX International Symposium on Biological Control of Weeds (pp. 19–26). Stellenbosch.Google Scholar
  22. Feau, N., Vialle, A., Allaire, M., Maier, W., & Hamelin, R. C. (2011). DNA barcoding in the rust genus Chrysomyxa and its implications for the phylogeny of the genus. Mycologia, 103, 1250–1266.PubMedCrossRefGoogle Scholar
  23. Freire, M. C. M., de Oliveira, L. O., de Almeida, A. M. R., Schuster, I., Moreira, M. A., Liebenberg, M. M., & Mienie, C. M. S. (2008). Evolutionary history of Phakopsora pachyrhizi (the Asian soybean rust) in Brazil based on nucleotide sequences of the internal transcribed spacer region of the nuclear ribosomal DNA. Genetics and Molecular Biology, 31, 920–931.CrossRefGoogle Scholar
  24. Freire, M. C. M., da Silva, M. R., Zhang, X., Almeida, A. M. R., Stacey, G., & de Oliveira, L. O. (2012). Nucleotide polymorphism in the 5.8S nrDNA gene and internal transcribed spacers in Phakopsora pachyrhizi viewed from structural models. Fungal Genetics and Biology, 49, 95–100.PubMedCrossRefGoogle Scholar
  25. Gaumann, E. (1959). Die Rostpilze Mitteleuropas mit besonderer Berücksichtigung der Schweiz. Band XII, Beiträge zur Kryptogamenflora der Schweiz. Bern: Buchdruckerei Buchler & Co.Google Scholar
  26. Göker, M., García-Blázquez, G., Voglmayr, H., Tellería, M. T., & Martín, M. P. (2009). Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS ONE, 4(7), e6319. doi: 10.1371/journal.pone.0006319.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Guindon, S., & Gascuel, O. (2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.PubMedCrossRefGoogle Scholar
  28. Harrington, T. C., & Rizzo, D. M. (1999). Defining species in the fungi, chapter 3. In: J. J. Worrall, (Ed.), Structure and Dynamics of Fungal Populations. Kluwer Press. p 43–71.Google Scholar
  29. Huelsenbeck, J. P., & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar
  30. Hulme, P. E., & Bremner, E. T. (2006). Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. Journal of Applied Ecology, 43, 43–50.CrossRefGoogle Scholar
  31. Iqbal, S. H., & Khalid, A. N. (1996). Material for the fungus flora of Pakistan. II. An updated check list of rust fungi (Uredinales) of Pakistan. Sultania, 1, 39–67.Google Scholar
  32. Khuroo, A. A., Reshi, Z. A., Malik, A. H., Weber, E., Rashid, I., & Dar, G. H. (2012). Alien flora of India: taxonomic composition, invasion status and biogeographic affiliations. Biological Invasions, 14, 99–113.CrossRefGoogle Scholar
  33. Kiss, L. (2012). Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proceedings of the National Acadamy of Sciences of the United States of America, 109(27), E1811.CrossRefGoogle Scholar
  34. Kovács, G. M., Trappe, J. M., Alsheikh, A. M., Bóka, K., & Elliott, T. F. (2008). Imaia, a new truffle genus to accommodate Terfezia gigantea. Mycologia, 100, 930–939.PubMedCrossRefGoogle Scholar
  35. Kovács, G. M., Balázs, T. K., Calonge, F. D., & Martín, M. P. (2011a). The diversity of Terfezia desert truffles: new species and a highly variable species complex with intrasporocarpic nrDNA ITS heterogeneity. Mycologia, 103, 841–853.PubMedCrossRefGoogle Scholar
  36. Kovács, G. M., Jankovics, T., & Kiss, L. (2011b). Variation in the nrDNA ITS sequences of some powdery mildew species: do routine molecular identification procedures hide valuable information? European Journal of Plant Pathology, 131, 135–141.CrossRefGoogle Scholar
  37. Löytynoja, A., & Goldman, N. (2008). An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Acadamy of Sciences of the United States of America, 102, 10557–10562.CrossRefGoogle Scholar
  38. Mayrose, M., Kane, N. C., Mayrose, I., Dlugosch, K. M., & Rieseberg, L. H. (2011). Increased growth in sunflower correlates with reduced defenses and altered gene expression in response to biotic and abiotic stress. Molecular Ecology, 20, 4683–4694.PubMedCrossRefGoogle Scholar
  39. Morgan, R. (2007). Impatiens: The vibrant world of busy Lizzies, Balsams, and Touch-Me-Nots (p. 219). Portland: Timber Press.Google Scholar
  40. Nagy, G. L., Kocsubé, S., Csanádi, Z., Kovács, G. M., Petkovics, T., Vágvölgyi, C., & Papp, T. (2012). Re-Mind the gap! Insertion—deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of fungi. PLoS ONE, 7, e49794.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K. H. (2008). Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics Online, 4, 193–201.PubMedCentralPubMedGoogle Scholar
  42. Perdomo-Sánchez, O., & Piepenbring, M. (2008). A new species of Puccinia (Pucciniales, Basidiomycota) and new records of rust fungi from Panama. Mycological Progress, 3, 161–168.CrossRefGoogle Scholar
  43. Pfunder, M., Schürcha, S., & Roy, B. A. (2001). Sequence variation and geographic distribution of pseudoflower-forming rust fungi (Uromyces pisi s. lat.) on Euphorbia cyparissias. Mycological Research, 105, 57–66.CrossRefGoogle Scholar
  44. Piskorz, R., & Klimko, M. (2006). The effect of Puccinia komarovii Tranzsch. infection on characters of Impatiens parviflora DC. in Galio silvatici-carpinetum (R. tx. 1937) oberd. 1957 forest association. Acta Societatis Botanicorum Poloniae, 75, 51–59.CrossRefGoogle Scholar
  45. Pyšek, P., & Prach, K. (1995). Invasion dynamics of Impatiens glandulifera—a century of spreading reconstructed. Biological Conservation, 74, 41–48.CrossRefGoogle Scholar
  46. R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
  47. Ree, R. (2008). Gapcode.py 2.1. Distributed by the author at: http://www.reelab.net/home/node/44.
  48. Rodriguez-Saona, C., Vorsa, N., Singh, A. P., Johnson-Cicalese, J., Szendrei, Z., Mescher, M. C., & Frost, C. J. (2011). Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. Journal of Experimental Botany, 62, 2633–2644.PubMedCrossRefGoogle Scholar
  49. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.PubMedCrossRefGoogle Scholar
  50. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Sponge, J., Levesque, C. A., & Chen, W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Acadamy of Sciences of the United States of America, 109, 6241–6246.CrossRefGoogle Scholar
  51. Seier, M. K., Morin, L., Van der Merwe, M., Evans, H. C., & Romero, A. (2009). Are the microcyclic rust species Puccinia melampodii and Puccinia xanthii conspecific? Mycological Research, 113, 1271–1282.PubMedCrossRefGoogle Scholar
  52. Seifert, K. A., Wingfield, B. D., & Wingfield, M. J. (1995). A critique of DNA sequence analysis in the taxonomy of filamentous Ascomycetes and ascomycetous anamorphs. Canadian Journal of Botany, 73, S760–S767.CrossRefGoogle Scholar
  53. Simmons, M. P., Ochoterena, H., & Carr, T. G. (2001). Incorporation, relative homoplasy and effect of gap characters in sequence-based phylogenetic analyses. Systematic Biology, 50, 454–462.PubMedCrossRefGoogle Scholar
  54. Simon, U. K., & Weiss, M. (2008). Intragenomic variation of fungal ribosomal genes is higher than previously thought. Molecular Biology and Evolution, 25, 2251–2254.PubMedCrossRefGoogle Scholar
  55. Staden, R., Beal, K. F., & Bonfield, J. K. (2000). The staden package 1998. Methods in Molecular Biology, 132, 115–130.PubMedGoogle Scholar
  56. Stec-Rouppertowa, W. (1936). Puccinia komarovii Tranzsch. in Polen. Annales Mycologia, 34, 59–60.Google Scholar
  57. Sultan, M. A., Ikram-ul-Haq, Khalid, A. N., & Mukhtar, H. (2006). A contribution to Uredinales of Northern areas of Pakistan. Mycopathologia, 4, 9–11.Google Scholar
  58. Sydow, H. (1935). Einzug einer asiatischen Uredinee (Puccinia komarowi Tranzsch.) in Deutschland. Annales Mycologici, Berlin, 33, 149–208.Google Scholar
  59. Sydow, H., & Sydow, P. (1904). Neue und kritische uredineen. II. Annales Mycologici, 2, 27–31.Google Scholar
  60. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Tanner, R. A., Varia, S., Eschen, R., Wood, S., Murphy, S. T., & Gange, A. C. (2013). Impacts of an invasive non-native annual weed, Impatiens glandulifera, on above- and below-ground invertebrate communities in the United Kingdom. PLoS ONE, 8(6), e67271. doi: 10.1371/journal.pone.0067271.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Vanderweyen, A., & Fraiture, A. (2009). Observation de Puccinia komarovii en Belgique. Revue du Cercle de Mycologie de Bruxelles, 9, 52–55.Google Scholar
  63. Virtudazo, E. V., Nakamura, H., & Kakishima, M. (2001). Ribosomal DNA-ITS sequence polymorphism in the sugarcane rust, Puccinia kuehnii. Mycoscience, 42, 447–453.CrossRefGoogle Scholar
  64. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press.Google Scholar
  65. Wilgenbusch, J. C., Warren, D. L., & Swofford, D. L. (2004). AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Website http://ceb.csit.fsu.edu/awty.
  66. Zhuang, J.-Y. (2003). Flora Fungorum Sinicorum. Vol. 19. Uredinales (II). Beijing: Science Press. 324 p.Google Scholar
  67. Zhuang, J.-Y., & Wei, S.-X. (1994). An annotated checklist of rust fungi from the Mt. Qomolangma region (Tibetan Everest Himalaya). Mycosystema, 7, 37–87.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Robert A. Tanner
    • 1
  • Carol A. Ellison
    • 1
  • Marion K. Seier
    • 1
  • Gábor M. Kovács
    • 2
    • 3
  • Edit Kassai-Jáger
    • 2
    • 4
  • Zsolt Berecky
    • 2
  • Sonal Varia
    • 1
  • Djami Djeddour
    • 1
  • Mool Chand Singh
    • 5
  • Ágnes Csiszár
    • 6
  • Péter Csontos
    • 7
  • Levente Kiss
    • 2
  • Harry C. Evans
    • 1
  1. 1.CABIEghamUK
  2. 2.Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of Sciences (MTA)BudapestHungary
  3. 3.Institute of Biology, Department of Plant AnatomyEötvös Loránd UniversityBudapestHungary
  4. 4.Faculty of Health Sciences, Institute of Health Promotion and Clinical Methodology, Department of EpidemiologySemmelweis UniversityBudapestHungary
  5. 5.National Bureau of Plant Genetic ResourcesNew DelhiIndia
  6. 6.Department of Botany and Nature Conservation, Faculty of ForestryUniversity of West HungarySopronHungary
  7. 7.Institute for Soil Science and Agricultural Chemistry, Centre for Agricultural ResearchHungarian Academy of Sciences (MTA)BudapestHungary

Personalised recommendations