Skip to main content

Sexual reproduction contributes to genotypic variation in the population of Puccinia graminis in Tajikistan

Abstract

Stem rust, caused by Puccinia graminis, is a potential threat to wheat production in Central Asia. To investigate if sexual reproduction is important for the epidemiology of the disease, the population biology of the fungus was studied. Samples of P. graminis were collected from six wheat fields and from wild oats within two of the wheat fields during the growing season of 2010. The population structure of P. graminis was investigated by evaluating a total of 121 single uredinia collected from wheat and wild oats, using nine polymorphic simple sequence repeat (SSR) markers. The results presented in this study indicate that there is a selection process by the grass host, in particular wheat, that favours certain clones, which in turn affects the population structure of P. graminis in Tajikistan. The genotypic variation was large, both within and between the wheat fields and three populations were in linkage equilibrium, indicating that sexual reproduction within the P. graminis population takes place. This leads to the conclusion that the presence of Berberis spp. in Tajikistan has an important role in the population dynamics of P. graminis within the country, even if the fungus must reproduce primarily in a clonal manner during most of the year. Results also confirm that the two formae speciales, P. graminis f. sp. tritici and P. graminis f. sp. avenae, are genetically different even if they were collected in the same field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abbasi, M., Goodwin, S. B., & Scholler, M. (2005). Taxonomy, phylogeny, and distribution of Puccinia graminis, the black stem rust: new insights based on rDNA sequence data. Mycoscience, 46, 241–247.

    CAS  Article  Google Scholar 

  2. Agapow, P. M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1, 101–102.

    CAS  Article  Google Scholar 

  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Anonymous (2014). Rust susceptible Berberis, Mahoberberis, and Mahonia plants. USDA, Cereal disease laboaratory. http://www.ars.usda.gov/Main/docs.htm?docid=9751. Accessed 25 Aug 2014.

  5. Barnes, C. W., & Szabo, L. J. (2007). Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. Phytopathology, 97(6), 717–727.

    CAS  PubMed  Article  Google Scholar 

  6. Berlin, A., Djurle, A., Samils, B., & Yuen, J. (2012). Genetic variation in Puccinia graminis collected from oat, rye and barberry. Phytopathology, 102, 1006–1012.

    PubMed  Article  Google Scholar 

  7. Berlin, A., Samils, B., Djurle, A., Wirsén, H., Szabo, L., & Yuen, J. (2013). Disease development and genotypic diversity of Puccinia graminis f. sp. avenae in Swedish oat fields. Plant Pathology, 62(1), 32–40.

    CAS  Article  Google Scholar 

  8. Davlatov, S.-K., & Baikova, E. V. (2011). Altitudinal limits of Berberis L. in Tajikistan. Contemporary Problems of Ecology, 4(2), 164–166.

    Article  Google Scholar 

  9. Donish. (1982). Tajikistan: Priroda i prirodnye resursy (Tajikistan: Nature and Natural Resources). Dushanbe: Donish.

    Google Scholar 

  10. Eriksson, J., & Henning, E. (1896). Die Getrideroste ihre Geschichte und Natur sowie Massregeln gegen dieselben. Stockholm: P. A. Nordstedt & Söner.

    Google Scholar 

  11. Goudet, J. (1995). Fstat version 1.2: a computer program to calculate Fstatistics. Journal of Heredity, 86(6), 485–486.

    Google Scholar 

  12. Gäumann, E. (1959). Die Rostpilze Mitteleuropas. Bern: Buchdruckeri Büchler & Co.

    Google Scholar 

  13. Jin, Y. (2011). Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis. Euphytica, 179(1), 105–108.

    Article  Google Scholar 

  14. Jin, Y., Szabo, L. J., Rouse, M. N., Fetch, T., Pretorius, Z. A., Wanyera, R., & Njau, P. (2009). Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Disease, 93, 367–370.

    CAS  Article  Google Scholar 

  15. Johnson, T. (1949). Intervarietal crosses in Puccinia graminis. Canadian Journal of Research Section C, 27, 45–65.

    Article  Google Scholar 

  16. Kolmer, J. A. (2005). Tracking wheat rust on a continental scale. Current Opinion in Plant Biology, 5, 411–449.

    Google Scholar 

  17. Lehtinen, A., Andersson, B., Le, V. H., Naertad, R., Rastas, M., Ketoja, E., Hannukkala, A. O., Hermansen, A., Nielsen, B. J., Hansen, J. G., & Yuen, J. (2009). Aggressiveness of Phytophthora infestans on detached potato leaflets in four Nordic countries. Plant Pathology, 58, 690–702.

    Article  Google Scholar 

  18. Leonard, K. J., & Szabo, L. J. (2005). Stem rust of small grains and grasses caused by Puccinia graminis. Molecular Plant Pathology, 6(2), 99–111.

    PubMed  Article  Google Scholar 

  19. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.

    CAS  PubMed  Article  Google Scholar 

  20. Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295.

    Article  Google Scholar 

  21. Peterson, R. F., Campbell, A. B., & Hannah, A. E. (1948). A diagrammatic scale for estimating rust severity on leaves and stems of cereals. Canadian Journal of Research Section C, 26, 496–500.

    Article  Google Scholar 

  22. Pett, B., Muminjanov, H., Morgunov, A., Rahmatov, M., & Sarkisova, T. (2005). Wheat diseases & pests observation for selection of resistant varieties in Tajikistan. Agromeridian, Theoretical and Applied Agricultural Research Journal (1) 83–87.

  23. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Rahmatov, M., Husenov, B., Otambekova, M., Makhkamov, M., Eshonova, Z., Soliev, B., Karimov, M., Ibragimov, A., Hede, A., Morgounov, A., & Muminjanov, H. (2010). Results of investigations on wheat breeding in Tajikistan (In Russian). News of the Academy of Sciences of the Republic of Tajikistan, 172, 71–82. Dushanbe.

    Google Scholar 

  25. Roelfs, A. P. (1982). Effects of barberry eradication on stem rust in the United States. Plant Disease, 66(2), 177–181.

    Article  Google Scholar 

  26. Roelfs, A. P., Singh, R. P., & Saari, E. E. (1992). Rust diseases of wheat: Concepts and methods of disease management. Mexico: CIMMYT.

    Google Scholar 

  27. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

    CAS  PubMed  Google Scholar 

  28. Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Bhavani, S., Njau, P., Herrera-Foessel, S., Singh, P. K., Singh, S., & Govindan, V. (2011). The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology, 49, 465–481.

    CAS  PubMed  Article  Google Scholar 

  29. Szabo, L. J. (2007). Development of simple sequence repeat markers for the plant pathogenic rust fungus. Puccinia graminis. Molecular Ecology Notes, 7, 92–94.

    CAS  Article  Google Scholar 

  30. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kurmar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Ul’anishchev, V. I. (1978). Opredelitel' rzhavchinnykh gribov SSSR. Chast 2 (Key to rust fungi of the USSR). Leningrad: Akademiya Nauk.

  33. Weir, B. S., & Cockerham, C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38(6), 1358–1370.

    Article  Google Scholar 

  34. Wingen, L. U., Shaw, M. W., & Brown, J. K. M. (2013). Long-distance dispersal and its influence on adaptation to host resistance in a heterogeneous landscape. Plant Pathology, 62(1), 9–20.

    Article  Google Scholar 

  35. Zambino, P. J., & Szabo, L. J. (1993). Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. Mycologia, 85(3), 401–414.

    CAS  Article  Google Scholar 

  36. Zhong, S., Leng, Y., Friesen, T. L., Faris, J. D., & Szabo, L. J. (2009). Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stem rust fungus Puccinia graminis f. sp. tritici. Phytopathology, 99(3), 282–289.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Bernt Pett for assistance with sample collection, Annika Djurle for valuable comment on the manuscript and the Swedish University for Agricultural Sciences (SLU) for funding this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Berlin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1
figure3

Structure output for K=5. Samples denominated as P. graminis f. sp. tritici are represented by yellow, green, pink and blue, and samples denominated as P. graminis f. sp. avenae are represented in red. (GIF 120 kb)

Supplementary Figure 2
figure4

Neighbor-joining tree based on the ITS sequences of the collected samples with 1,000 bootstrap replications (GIF 8 kb)

Supplementary Table 1

BLASTn identity based on the Internal transcribed spacer (ITS) region (DOCX 97 kb)

High Resolution Image

(EPS 768 kb)

High Resolution Image

(EPS 324 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berlin, A., Rahmatov, M., Muminjanov, H. et al. Sexual reproduction contributes to genotypic variation in the population of Puccinia graminis in Tajikistan. Eur J Plant Pathol 141, 159–168 (2015). https://doi.org/10.1007/s10658-014-0534-2

Download citation

Keywords

  • Avena fatua
  • Triticum aestivum
  • microsatellites
  • alternate host
  • Berberis spp
  • Puccinia graminis f. sp. tritici
  • Puccinia graminis f. sp. avenae