Advertisement

European Journal of Plant Pathology

, Volume 141, Issue 1, pp 147–158 | Cite as

Antifungal effect of chito-oligosaccharides with different degrees of polymerization

  • Md. Hafizur Rahman
  • Linda Gordon Hjeljord
  • Berit B. Aam
  • Morten SørlieEmail author
  • Arne Tronsmo
Article

Abstract

Chitosan, obtained from chitin by partial N-deacetylation, shows little or no toxicity towards mammalian cells, is biodegradable, and non-allergenic. It is known that chitosan may have antifungal properties, but the effect of defined chitosan or chito-oligosaccharides (CHOS) with different degree of polymerization is not well known. The objective of this study was to produce CHOS with different DPn (average degree of polymerization) and determine the most effective DPn of chitosan and CHOS against Botrytris cinerea Pers. Ex Fr. and Mucor piriformis Fischer. In vitro testing showed that CHOS of DPn 23 and 40 had the highest germination inhibition against the tested pathogens. The original chitosan (DPn 206) and a collection of short CHOS (degree of polymerization of 3–10) were significantly (P < 0.01) less effective than CHOS of DPn 23 and 40. M. piriformis M119J showed the most abnormal swelling in presence of CHOS DPn 40, but all abnormally swollen conidia showed further germ tube elongation. In vivo testing showed that CHOS DPn 23 was the most effective in reducing flower infection by two isolates of B. cinerea. Our results show that CHOS inhibit fungal germination and growth and that the effect depends highly on the level of polymerization of the oligomers.

Keywords

Botrytis cinerea Mucor piriformis Chitosan Chito-oligosaccharides (CHOS) Antifungal Plant protection 

References

  1. Aam, B. B., Heggset, E. B., Norberg, A. L., Sørlie, M., Vårum, K. M., & Eijsink, V. G. H. (2010). Production of chitooligosaccharides and their potential applications in medicine. Marine Drugs, 8, 1482–1517.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ait, B. E., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22, 608–614.CrossRefGoogle Scholar
  3. Allan, C. R., & Hadwiger, L. A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental Mycology, 3, 285–287.CrossRefGoogle Scholar
  4. Aziz, A., Trotel-Aziz, P., Dhuicq, L., Jeandet, P., Couderchet, M., & Vernet, G. (2006). Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology, 96, 1188–1194.PubMedCrossRefGoogle Scholar
  5. Bardin, M., Fargues, J., & Nicot, P. (2008). Compatibility between biopesticides used to control grey mould, powdery mildew and whitefly on tomato. Biological Control, 46, 476–483.CrossRefGoogle Scholar
  6. Bautista-Baños, S., Hernández-López, M., & Bosquez-Molina, E. (2004). Growth inhibition of select fungi by chitosan and plant extracts. Mexican Journal of Phytopathology, 22, 178–186.Google Scholar
  7. Card, S. D., Walter, M., Jaspers, M. V., Sztejnberg, A., & Stewart, A. (2009). Targeted selection of antagonistic microorganisms for control of Botrytis cinerea of strawberry in New Zealand. Australasian Plant Pathology, 38, 183–192.CrossRefGoogle Scholar
  8. Cederkvist, F. H., Parmer, M. P., Vårum, K. M., Eijsink, V. G. H., & Sørlie, M. (2008). Inhibition of a family 18 chitinase by chitooligosaccharides. Carbohydrate Polymers, 74, 41–49.CrossRefGoogle Scholar
  9. Eikenes, M., Alfredsen, G., Christensen, B. E., Militz, H., & Solheim, H. (2005). Comparison of chitosans with different molecular weights as possible wood preservatives. Journal of Wood Science, 51, 387–394.CrossRefGoogle Scholar
  10. El-Ghaouth, A., Arul, J., Grenier, J., & Asselin, A. (1992). Antifungal activity of chitosan on two post harvest pathogens of strawberry fruits. Phytopathology, 82, 398–402.CrossRefGoogle Scholar
  11. Gerasimenko, D. V., Avdienko, I. D., Bannikova, G. E., Zueva, O. Y., & Varlamov, V. P. (2004). Antibacterial effects of water-soluble low-molecular-weight chitosans on different microorganisms. Applied Biochemistry and Microbiolology, 40, 253–257.CrossRefGoogle Scholar
  12. Goody, G. W. (1990). Physiology of microbial degradation of chitin and chitosan. Biodegradation, 1, 177–190.CrossRefGoogle Scholar
  13. Hadwiger, L. A. (1979). Chitosan formation in Fusarium solani macroconidia on pea tissue. Plant Physiology, 63, 133.CrossRefGoogle Scholar
  14. Hadwiger, L. A., & Beckman, J. M. (1980). Chitosan as a component of pea-Fusarium solani interactions. Plant Physiology, 66, 205–211.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Heggset, E. B., Dybvik, A. I., Hoell, I. A., Norberg, A. L., Sørlie, M., Eijsink, V. G. H., & Vårum, K. M. (2010). Degradation of chitosans with a family 46 chitosanase from Streptomyces coelicolor A3(2). Biomacromolecules, 11, 2487–2497.PubMedCrossRefGoogle Scholar
  16. Hernández-Lauzardo, A. N., Bautista-Baños, S., Velázquez-delValle, M. G., Méndez-Montealvo, M. G., Sánchez-Rivera, M. M., & Bello-Pérez, L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydrate Polymers, 73, 541–547.CrossRefGoogle Scholar
  17. Holmes, G. J., & Eckert, J. W. (1999). Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology, 89, 716–721.PubMedCrossRefGoogle Scholar
  18. Jung, B., Kim, C., Choi, K., Lee, Y. M., & Kim, J. (1999). Preparation of amphilic chitosan and their antimicrobial activities. Journal of Applied Polymer Science, 72, 1713–1719.CrossRefGoogle Scholar
  19. Kendra, D. F., & Hadwiger, L. A. (1984). Characterization of the smallest chitosan oligomers that is maximally antifungal to Fusarium solani and elicit Pisatin formation in Pisum sativum. Experimental Mycology, 8, 276–281.CrossRefGoogle Scholar
  20. Kim, S., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydrate Polymers, 62, 357–368.CrossRefGoogle Scholar
  21. Lin, W., Hu, X., Zhang, W., Rogers, W. J., & Cai, W. (2005). Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. Journal of Plant Physiology, 162, 937–944.PubMedCrossRefGoogle Scholar
  22. Meng, X., Yang, L., Kennedy, J. F., & Tian, S. (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers, 81, 70–75.CrossRefGoogle Scholar
  23. Oliveira Junior, E. N., Gueddari, N. E. E., Moerschbacher, B. M., & Franco, T. T. (2012). Growth rate inhibition of phytopathogenic fungi by characterized chitosans. Brazilian Journal of Microbiology, 43, 800–809.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Palma-Guerrero, J., Jansson, H. B., Salinas, J., & Lopez-Llorca, L. V. (2008). Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology, 104, 541–553.PubMedGoogle Scholar
  25. Parvu, M., Parvu, A. E., Craciun, C., Barbu-Tudoran, L., Vlase, L., Tamas, M., et al. (2010). Changes in Botrytis cinerea conidia caused by Berberis vulgaris extract. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38, 15–20.Google Scholar
  26. Rahman, M. H. (2013). Antifungal activity of chitosan/chitooligosaccharides alone and in combination with chemical fungicides against fungal pathogens. PhD thesis number 2013–12. Norwegian University of Life Sciences. ISBN 978-82-575-1115-9.Google Scholar
  27. Rhoades, J., & Roller, S. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology, 66, 80–86.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Rosslenbroich, H., & Stuebler, D. (2000). Botrytis cinerea- history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.CrossRefGoogle Scholar
  29. Ruiz-Herrera, J. (1992). Fungal cell wall: Structure, synthesis, and assembly. London: CRS Press.Google Scholar
  30. Sholberg, P. L. (1990). A new postharvest rot of peaches in Canada caused by Mucor piriformis. Canadian Journal of Plant Pathology, 12, 219–221.CrossRefGoogle Scholar
  31. Singla, A. K., & Chawla, M. (2001). Chitosan: some pharmaceutical and biological aspects -an update. Journal of Pharmacy and Pharmacology, 53, 1047–1067.PubMedCrossRefGoogle Scholar
  32. Sørbotten, A., Horn, S. J., Eijsink, V. G. H., & Vårum, K. M. (2005). Degradation of chitosans with chitinase B from Serratia marcescens production of chito-oligosaccharides and insight into enzyme processivity. FEBS Journal, 272, 538–549.PubMedCrossRefGoogle Scholar
  33. Stössel, P., & Leuba, J. L. (1984). Effect of chitosan, chitin and some aminosugar on growth of various soil born phytopathogenic fungi. Journal of Phytopathology, 111, 82–90.CrossRefGoogle Scholar
  34. Tronsmo, A. (1991). Biological and integrated controls of Botrytis cinerea on apple with Trichoderma harzianum. Biological Control, 1, 59–62.CrossRefGoogle Scholar
  35. Trotel-Aziz, P., Couderchet, M., Vernet, G., & Aziz, A. (2006). Chitosan stimulates defense reactions in grapevine leaves and inhibits developmet of Botrytis cinerea. European Journal of Plant Pathology, 114, 405–413.CrossRefGoogle Scholar
  36. Vander, P., Vårum, K. M., Domard, A., Gueddari, N. E. E., & Moerschbacher, B. M. (1998). Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reaction in wheat leaves. Plant Physiology, 118, 1353–1359.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Wang, G. H. (1992). Inhibition and inactivation of five species of foodborne pathogens by chitosan. Journal of Food Protection, 55, 916–919.Google Scholar
  38. Williamson, B., Tudzynski, B., Tudzynski, P. L., & Vankan, J. A. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8, 561–580.PubMedCrossRefGoogle Scholar
  39. Xu, J., Zhao, X., Han, X., & Du, Y. (2007). Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochemistry and Physiology, 87, 220–228.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Md. Hafizur Rahman
    • 1
  • Linda Gordon Hjeljord
    • 1
  • Berit B. Aam
    • 1
  • Morten Sørlie
    • 1
    Email author
  • Arne Tronsmo
    • 1
  1. 1.Department of Chemistry, Biotechnology and Food scienceNorwegian University of Life Sciences (UMB)ÅsNorway

Personalised recommendations