Skip to main content
Log in

Antifungal effect of chito-oligosaccharides with different degrees of polymerization

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Chitosan, obtained from chitin by partial N-deacetylation, shows little or no toxicity towards mammalian cells, is biodegradable, and non-allergenic. It is known that chitosan may have antifungal properties, but the effect of defined chitosan or chito-oligosaccharides (CHOS) with different degree of polymerization is not well known. The objective of this study was to produce CHOS with different DPn (average degree of polymerization) and determine the most effective DPn of chitosan and CHOS against Botrytris cinerea Pers. Ex Fr. and Mucor piriformis Fischer. In vitro testing showed that CHOS of DPn 23 and 40 had the highest germination inhibition against the tested pathogens. The original chitosan (DPn 206) and a collection of short CHOS (degree of polymerization of 3–10) were significantly (P < 0.01) less effective than CHOS of DPn 23 and 40. M. piriformis M119J showed the most abnormal swelling in presence of CHOS DPn 40, but all abnormally swollen conidia showed further germ tube elongation. In vivo testing showed that CHOS DPn 23 was the most effective in reducing flower infection by two isolates of B. cinerea. Our results show that CHOS inhibit fungal germination and growth and that the effect depends highly on the level of polymerization of the oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aam, B. B., Heggset, E. B., Norberg, A. L., Sørlie, M., Vårum, K. M., & Eijsink, V. G. H. (2010). Production of chitooligosaccharides and their potential applications in medicine. Marine Drugs, 8, 1482–1517.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ait, B. E., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22, 608–614.

    Article  Google Scholar 

  • Allan, C. R., & Hadwiger, L. A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental Mycology, 3, 285–287.

    Article  CAS  Google Scholar 

  • Aziz, A., Trotel-Aziz, P., Dhuicq, L., Jeandet, P., Couderchet, M., & Vernet, G. (2006). Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology, 96, 1188–1194.

    Article  CAS  PubMed  Google Scholar 

  • Bardin, M., Fargues, J., & Nicot, P. (2008). Compatibility between biopesticides used to control grey mould, powdery mildew and whitefly on tomato. Biological Control, 46, 476–483.

    Article  Google Scholar 

  • Bautista-Baños, S., Hernández-López, M., & Bosquez-Molina, E. (2004). Growth inhibition of select fungi by chitosan and plant extracts. Mexican Journal of Phytopathology, 22, 178–186.

    Google Scholar 

  • Card, S. D., Walter, M., Jaspers, M. V., Sztejnberg, A., & Stewart, A. (2009). Targeted selection of antagonistic microorganisms for control of Botrytis cinerea of strawberry in New Zealand. Australasian Plant Pathology, 38, 183–192.

    Article  Google Scholar 

  • Cederkvist, F. H., Parmer, M. P., Vårum, K. M., Eijsink, V. G. H., & Sørlie, M. (2008). Inhibition of a family 18 chitinase by chitooligosaccharides. Carbohydrate Polymers, 74, 41–49.

    Article  Google Scholar 

  • Eikenes, M., Alfredsen, G., Christensen, B. E., Militz, H., & Solheim, H. (2005). Comparison of chitosans with different molecular weights as possible wood preservatives. Journal of Wood Science, 51, 387–394.

    Article  CAS  Google Scholar 

  • El-Ghaouth, A., Arul, J., Grenier, J., & Asselin, A. (1992). Antifungal activity of chitosan on two post harvest pathogens of strawberry fruits. Phytopathology, 82, 398–402.

    Article  CAS  Google Scholar 

  • Gerasimenko, D. V., Avdienko, I. D., Bannikova, G. E., Zueva, O. Y., & Varlamov, V. P. (2004). Antibacterial effects of water-soluble low-molecular-weight chitosans on different microorganisms. Applied Biochemistry and Microbiolology, 40, 253–257.

    Article  CAS  Google Scholar 

  • Goody, G. W. (1990). Physiology of microbial degradation of chitin and chitosan. Biodegradation, 1, 177–190.

    Article  Google Scholar 

  • Hadwiger, L. A. (1979). Chitosan formation in Fusarium solani macroconidia on pea tissue. Plant Physiology, 63, 133.

    Article  Google Scholar 

  • Hadwiger, L. A., & Beckman, J. M. (1980). Chitosan as a component of pea-Fusarium solani interactions. Plant Physiology, 66, 205–211.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heggset, E. B., Dybvik, A. I., Hoell, I. A., Norberg, A. L., Sørlie, M., Eijsink, V. G. H., & Vårum, K. M. (2010). Degradation of chitosans with a family 46 chitosanase from Streptomyces coelicolor A3(2). Biomacromolecules, 11, 2487–2497.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Lauzardo, A. N., Bautista-Baños, S., Velázquez-delValle, M. G., Méndez-Montealvo, M. G., Sánchez-Rivera, M. M., & Bello-Pérez, L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydrate Polymers, 73, 541–547.

    Article  Google Scholar 

  • Holmes, G. J., & Eckert, J. W. (1999). Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology, 89, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Jung, B., Kim, C., Choi, K., Lee, Y. M., & Kim, J. (1999). Preparation of amphilic chitosan and their antimicrobial activities. Journal of Applied Polymer Science, 72, 1713–1719.

    Article  CAS  Google Scholar 

  • Kendra, D. F., & Hadwiger, L. A. (1984). Characterization of the smallest chitosan oligomers that is maximally antifungal to Fusarium solani and elicit Pisatin formation in Pisum sativum. Experimental Mycology, 8, 276–281.

    Article  CAS  Google Scholar 

  • Kim, S., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydrate Polymers, 62, 357–368.

    Article  CAS  Google Scholar 

  • Lin, W., Hu, X., Zhang, W., Rogers, W. J., & Cai, W. (2005). Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. Journal of Plant Physiology, 162, 937–944.

    Article  CAS  PubMed  Google Scholar 

  • Meng, X., Yang, L., Kennedy, J. F., & Tian, S. (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers, 81, 70–75.

    Article  CAS  Google Scholar 

  • Oliveira Junior, E. N., Gueddari, N. E. E., Moerschbacher, B. M., & Franco, T. T. (2012). Growth rate inhibition of phytopathogenic fungi by characterized chitosans. Brazilian Journal of Microbiology, 43, 800–809.

    Article  PubMed Central  PubMed  Google Scholar 

  • Palma-Guerrero, J., Jansson, H. B., Salinas, J., & Lopez-Llorca, L. V. (2008). Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology, 104, 541–553.

    CAS  PubMed  Google Scholar 

  • Parvu, M., Parvu, A. E., Craciun, C., Barbu-Tudoran, L., Vlase, L., Tamas, M., et al. (2010). Changes in Botrytis cinerea conidia caused by Berberis vulgaris extract. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38, 15–20.

    CAS  Google Scholar 

  • Rahman, M. H. (2013). Antifungal activity of chitosan/chitooligosaccharides alone and in combination with chemical fungicides against fungal pathogens. PhD thesis number 2013–12. Norwegian University of Life Sciences. ISBN 978-82-575-1115-9.

  • Rhoades, J., & Roller, S. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology, 66, 80–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosslenbroich, H., & Stuebler, D. (2000). Botrytis cinerea- history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.

    Article  CAS  Google Scholar 

  • Ruiz-Herrera, J. (1992). Fungal cell wall: Structure, synthesis, and assembly. London: CRS Press.

    Google Scholar 

  • Sholberg, P. L. (1990). A new postharvest rot of peaches in Canada caused by Mucor piriformis. Canadian Journal of Plant Pathology, 12, 219–221.

    Article  Google Scholar 

  • Singla, A. K., & Chawla, M. (2001). Chitosan: some pharmaceutical and biological aspects -an update. Journal of Pharmacy and Pharmacology, 53, 1047–1067.

    Article  CAS  PubMed  Google Scholar 

  • Sørbotten, A., Horn, S. J., Eijsink, V. G. H., & Vårum, K. M. (2005). Degradation of chitosans with chitinase B from Serratia marcescens production of chito-oligosaccharides and insight into enzyme processivity. FEBS Journal, 272, 538–549.

    Article  PubMed  Google Scholar 

  • Stössel, P., & Leuba, J. L. (1984). Effect of chitosan, chitin and some aminosugar on growth of various soil born phytopathogenic fungi. Journal of Phytopathology, 111, 82–90.

    Article  Google Scholar 

  • Tronsmo, A. (1991). Biological and integrated controls of Botrytis cinerea on apple with Trichoderma harzianum. Biological Control, 1, 59–62.

    Article  Google Scholar 

  • Trotel-Aziz, P., Couderchet, M., Vernet, G., & Aziz, A. (2006). Chitosan stimulates defense reactions in grapevine leaves and inhibits developmet of Botrytis cinerea. European Journal of Plant Pathology, 114, 405–413.

    Article  CAS  Google Scholar 

  • Vander, P., Vårum, K. M., Domard, A., Gueddari, N. E. E., & Moerschbacher, B. M. (1998). Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reaction in wheat leaves. Plant Physiology, 118, 1353–1359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, G. H. (1992). Inhibition and inactivation of five species of foodborne pathogens by chitosan. Journal of Food Protection, 55, 916–919.

    Google Scholar 

  • Williamson, B., Tudzynski, B., Tudzynski, P. L., & Vankan, J. A. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8, 561–580.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Zhao, X., Han, X., & Du, Y. (2007). Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochemistry and Physiology, 87, 220–228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Sørlie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.H., Hjeljord, L.G., Aam, B.B. et al. Antifungal effect of chito-oligosaccharides with different degrees of polymerization. Eur J Plant Pathol 141, 147–158 (2015). https://doi.org/10.1007/s10658-014-0533-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0533-3

Keywords

Navigation