European Journal of Plant Pathology

, Volume 141, Issue 1, pp 133–145 | Cite as

Molecular assessment of genetic diversity of Xanthomonas arboricola pv. juglandis strains from Serbia by various DNA fingerprinting techniques

  • Žarko Ivanović
  • Tatjana Popović
  • Jaap Janse
  • Milan Kojić
  • Slaviša Stanković
  • Veljko Gavrilović
  • Djordje Fira
Article

Abstract

The purpose of the present study was to investigate the genetic diversity of X. arboricola pv. juglandis strains in Serbia. This bacterium is the causal agent of walnut blight and is also associated with apical necrosis of immature walnut fruits. Although walnut blight is long known and widespread in Serbia, a systematic strain diversity study of Xanthomonas arboricola pv. juglandis strains from different regions in Serbia has not been performed. The objectives of this work were to examine the molecular diversity and its possible biological significance of 59 isolates of X. arboricola pv. juglandis collected from different geographic locations in Serbia. Genomic variability was assessed by using repetitive PCR, SpeI macrorestriction analysis of genomic DNAs by pulsed-field gel electrophoresis (PFGE) and partial sequencing of the gyrB gene. Molecular analyses showed substantial genetic diversity among strains and existence of diverse populations of X. arboricola pv. juglandis in Serbia.

Keywords

Xanthomonas arboricola pv. juglandis Walnut Characterization 

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (Eds.). (1992). Current protocols in molecular biology, Vol. I. New York: Greene Publishing Associates and Wiley-Interscience.Google Scholar
  2. Barionovi, D., & Scortichini, M. (2008). Integron variability in Xanthomonas arboricola pv. juglandisand Xanthomonas arboricola pv. pruni strains. FEMS Microbiology Letters, 288, 19–24.PubMedCrossRefGoogle Scholar
  3. Belisario, A., Zoina, A., Pezza, L., & Luongo, L. (1999). Susceptibility of species of Juglans to pathovars of Xanthomonas campestris. European Journal of Forest Pathology, 29, 75–80.CrossRefGoogle Scholar
  4. Bergsma-Vlami, M., Martin, W., Koenraadt, H., Teunissen, H., Pothier, J. F., Duffy, B., & van Doorn, J. (2012). Molecular typing of Dutch isolates of Xanthomonas arboricola pv. pruni isolated from ornamental cherry laurel. Journal of Plant Pathology, 94(1, Supplement), S1.29–S1.35.Google Scholar
  5. Boureau, T., Kerkoud, M., Chhel, F., Hunault, G., Darrasse, A., Brin, C., Durand, K., Hajri, A., Poussier, S., Manceau, C., Lardeux, F., Saubion, F., & Jacques, M. A. (2013). A multiplex-PCR assay for identification of the quarantine plant pathogen Xanthomonas axonopodis pv. phaseoli. Journal of Microbiological Methods, 92, 42–50.PubMedCrossRefGoogle Scholar
  6. Burokiene, D., & Pulawska, J. (2012). Characterization of Xanthomonas arboricola pv. juglandis isolated from walnuts in Lithuania. Journal of Plant Pathology, 94, S1.23–S1.27.Google Scholar
  7. de Bruijn, F. J. (1992). Use of repetitive (repetitive extragenic palindromic and enterobacterialrepetitive intergeneric consensus) sequences and the polymerase chain reaction tofingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Applied and Environmental Microbiology, 58, 2180–2187.PubMedCentralPubMedGoogle Scholar
  8. Du Plessis, H. J., & Van der Westhuizen, T. J. (1995). Identification of Xanthomonas campestris pv. juglandis from (Persian) english walnut nursery trees in South Africa. Journal of Phytopathology, 143, 449–454.CrossRefGoogle Scholar
  9. Felsenstein, J. (1993). Phylogeny inference package version 3.5 c. Seattle: Department of Genetics, University of Washington.Google Scholar
  10. Gavrilović, V., & Arsenijević, M. (1999). Etiologial study of bacterial spots of walnut fruits. Plant Protection, 49, 295–302.Google Scholar
  11. Gironde, S., Guillaumes, J. & Manceau, C. (2009). Specific detection of Xanthomonas arboricola pv. juglandis pathogen on walnut. EPPO Conference on Diagnostics and Associated workshops, York, UK. http://www.cost873.ch/_uploads/_files/Gironde_York 2009.pdf.
  12. Hajri, A., Meyer, D., Delort, F., Guillaumes, J., Brin, C., & Manceau, C. (2010). Identification of a genetic lineage within Xanthomonas arboricola pv. juglandis as the causal agent of vertical oozing canker of Persian (English) walnut in France. Plant Pathology, 59, 1014–1022.CrossRefGoogle Scholar
  13. Hayward, A. (1993). The hosts of Xanthomonas. In J. Swings & E. L. Civerolo (Eds.), Xanthomonas (pp. 1–18). London: Chapman and Hall.Google Scholar
  14. Kaluzna, M., Pulawska, J., Waleron, M., & Sobiczewski, P. (2014). The genetic characterization of Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight in Poland. Plant Pathology. doi:10.1111/ppa.12211.Google Scholar
  15. Klement, Z. (1990). Inoculation of plant tissues. Cancer and dieback disease. In Z. Klement, K. Rudolph, & D. Sands (Eds.), Methods in phytobacteriology (pp. 105–106). Budapest: Akademiai Kiado.Google Scholar
  16. Kojic, M., Strahinic, I., Fira, D., Jovcic, B., & Topisirovic, L. (2006). Plasmid content and bacteriocin production by five strains of Lactococcus lactis isolated from semi-hard homemade cheese. Canadian Journal of Microbiology, 52, 1110–1120.PubMedCrossRefGoogle Scholar
  17. Lelliott, R. A., & Stead, D. E. (1987). Methods for the diagnosis of Bacterial Diseases of plants. Oxford: Blackwell Scientific Publications for the British Society of Plant Pathology.Google Scholar
  18. Leyns, F., De Cleene, M., Swings, J. G., & De Ley, J. (1984). The host range of the genus Xanthomonas. Botanical Review, 50, 308–356.CrossRefGoogle Scholar
  19. Loreti, S., Gallelli, A., Belisario, A., Wajnberg, E., & Corazza, L. (2001). Investigation of genomicvariability of Xanthomonas arboricola pv. juglandis by AFLP analysis. European Journal of Plant Pathology, 107, 583–591.CrossRefGoogle Scholar
  20. Louws, F. J., Fulbright, D. W., Stephens, C. T., & de Bruijn, F. J. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 60, 2286–2295.PubMedCentralPubMedGoogle Scholar
  21. Lupski, J. R., & Weinstock, G. M. (1992). Short, interspersed repetitive DNA sequences inprokaryotic genomes. Journal of Bacteriology, 174, 4525–4529.PubMedCentralPubMedGoogle Scholar
  22. Massomo, S. M. S., Nielsen, H., Mabagala, R. B., Mansfeld-Giese, K., Hockenhull, J., & Mortensen, C. N. (2003). Identification and characterisation of Xanthomonas campestris pv. campestris strains from Tanzania by pathogenicity tests, Biolog, rep-PCR and fatty acid methyl ester analysis. European Journal of Plant Pathology, 109, 775–789.CrossRefGoogle Scholar
  23. Moragrega, C., & Ozaktan, H. (2010). Apical necrosis of Persian (English) walnut (Juglans regia): An update. Journal Plant Pathology, 92, S167–S171.Google Scholar
  24. Moragrega, C., Matias, J., Aletà, N., Montesinos, E., & Rovira, M. (2011). Apical necrosis and premature drop of Persian (English) walnut fruit caused by Xanthomonas arboricola pv. juglandis. Plant Disease, 95, 1565–1570.CrossRefGoogle Scholar
  25. Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76, 1619–1626.CrossRefGoogle Scholar
  26. Parkinson, N., Cowie, C., Heeney, J., & Stead, D. (2009). Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. International Journal of Systematic and Evolutionary Microbiology, 59, 264–274.PubMedCrossRefGoogle Scholar
  27. Quezado-Duval, A. M., Leite, R. P., Truffi, D., & Camargo, L. E. A. (2004). Outbreaks of bacterial spot caused by Xanthomonas gardneri on processing tomato in central west Brazil. Plant Disease, 88, 157–161.CrossRefGoogle Scholar
  28. Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria (3rd ed.). St. Paul: APS Press.Google Scholar
  29. Scortichini, M., Marchesi, U., & Di Prospero, P. (2001). Genetic diversity of Xanthomonas arboricola pv. juglandis (synonyms: X. campestris pv. juglandis; X. juglandis pv. juglandis) strains from different geographical areas shown by repetitive polymerase chain reaction genomic fingerprinting. Journal of Phytopathology, 149, 325–332.CrossRefGoogle Scholar
  30. Scortichini, M., Rossi, M. P., & Marchesi, U. (2002). Genetic, phenotypic and pathogenic diversity of Xanthomonas arboricola pv. corylina strains question the representative nature of the type strain. Plant Pathology, 51, 374–381.CrossRefGoogle Scholar
  31. Valverde, A. T., Hubert, A., Stolov, A., Dagar, A., Kopelowitz, J., & Burdman, S. (2007). Assessment of genetic diversity of Xanthomonas campestris pv. campestris isolates from Israel by various DNA fingerprinting techniques. Plant Pathology, 56, 17–25.CrossRefGoogle Scholar
  32. Waterbury, P. G., & Lane, M. J. (1987). Generation of lambda concatemers for use as pulsed field electrophoresis size markers. Nucleic Acids Research, 15, 3930.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Young, J. M., Park, D. C., Shearman, H. M., & Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31, 366–377.PubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Žarko Ivanović
    • 1
  • Tatjana Popović
    • 1
  • Jaap Janse
    • 2
  • Milan Kojić
    • 3
  • Slaviša Stanković
    • 4
  • Veljko Gavrilović
    • 1
  • Djordje Fira
    • 4
  1. 1.Institute for Plant Protection and the EnvironmentBelgradeSerbia
  2. 2.Department of Laboratory Methods and DiagnosticsDutch General Inspection Service (NAK)EmmeloordThe Netherlands
  3. 3.Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
  4. 4.Faculty of BiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations