Skip to main content

Characterization of Pseudoperonospora cubensis isolates from Europe and Asia using ISSR and SRAP molecular markers

Abstract

Downy mildew caused by Pseudoperonospora cubensis is a major disease of cucurbits worldwide. New genotypes of the pathogen have recently appeared in the USA, EU and Israel causing breakdown of genetic resistance, expansion of host range, and the appearance of a new A2 mating type. Seventy-eight P. cubensis isolates were collected during 1996–2011 from cucurbits fields in different regions of Turkey, Israel and the Czech Republic and genetic diversity was analysed using highly polymorphic ISSR and SRAP molecular markers. The data acquired showed remarkable genetic diversity within and among the isolates. While isolates from Turkey and Czech Republic exhibited uniform genetic background, the isolates from Israel were clearly distinguished from the others. The results may indicate on migration and/or frequent sexual reproduction of the pathogen in Israel. Moreover the selected markers can be suggested for monitoring genetic diversity within P. cubensis isolates in further studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adhikari, B. N., Savory, E. A., Vaillancourt, B., Childs, K. L., Hamilton, J. P., Day, B., & Buell, C. R. (2012). Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS ONE, 7, e34954.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. Baysal, Ö., Siragusa, M., Ikten, H., Polat, I., Gumrukcu, E., Yigit, F., Carimi, F., & Texeira da Silva, J. A. (2009). Fusarium oxysporum f. sp lycopersici races and their genetic discrimination by molecular markers in West Mediterranean region of Turkey. Physiological and Molecular Plant Pathology, 74, 68–75.

    CAS  Article  Google Scholar 

  3. Beroiz, B., Ortego, F., Callejas, C., Hernandez-Crespo, P., Castañera, P., & Ochando, M. D. (2012). Genetic structure of Spanish populations of Ceratitis capitata revealed by RAPD and ISSR markers: implications for resistance management. Spanish Journal of Agricultural Research, 10, 815–825.

    Article  Google Scholar 

  4. Cappelli, C., Buonaurio, R., & Stravato, V. M. (2003). Occurrence of Pseudoperonospora cubensis pathotype 5 on squash in Italy. Plant Disease, 87, 449.

    Article  Google Scholar 

  5. Cohen, Y., & Rubin, A. E. (2012). Mating type and sexual reproduction of Pseudoperonospora cubensis, the downy mildew agent of cucurbits. European Journal of Plant Pathology, 132, 577–592.

    Article  Google Scholar 

  6. Cohen, Y., Meron, I., Mor, N., & Zuriel, S. (2003). A new pathotype of Pseudoperonospora cubensis causing downy mildew in cucurbits in Israel. Phytoparasitica, 31, 458–466.

    Article  Google Scholar 

  7. Cohen, Y., Rubin, A. E., & Galperin, M. (2013a). Host preference of mating type in Pseudoperonospora cubensis, the downy mildew causal agent of cucurbits. Plant Disease, 97, 292–292.

    Article  Google Scholar 

  8. Cohen, Y., Rubin, A. E., & Galperin, M. (2013b). Seed transmission of Pseudoperonospora cubensis in dalorit (Cucurbita moschata). Abstracts of Presentations at the 34th Congress of the Israeli Phytopathological Society February 19–20, 2013 [ARO] The Volcani Center, Bet Dagan 50250, Israel 5–6. Phytoparasitica. doi:10.1007/s12600-013-0310-4.

    Google Scholar 

  9. Cohen, Y., Rubin, A. E., Liu, X. L., Wang, W. Q., Zhang, Y. J., & Hermann, D. (2013c). First report on the occurrence of A2 mating type of the cucurbit downy mildew agent Pseudoperonospora cubensis in China. Plant Disease, 97, 559–559.

    Article  Google Scholar 

  10. Cooke, D. E. L., & Lees, A. K. (2004). Markers, old and new, for examining Phytophthora infestans diversity. Plant Pathology, 53, 692–704.

    CAS  Article  Google Scholar 

  11. Devran, Z., & Baysal, Ö. (2012). Genetic characterization of Meloidogyne incognita isolates from Turkey using sequence-related amplified polymorphism (SRAP). Biologia, 67, 535–539.

    CAS  Article  Google Scholar 

  12. Dubey, S. C., & Singh, S. R. (2008). Virulence analysis and oligonucleotide fingerprinting to detect diversity among indian isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Mycopathologia, 165, 389–406.

    CAS  PubMed  Article  Google Scholar 

  13. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology Research, 14, 2611–2620.

    CAS  Article  Google Scholar 

  14. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 47–50.

    CAS  Google Scholar 

  15. Fernando, W. G. D., Zhang, J. X., Dusabenyagasani, M., Guo, X. W., Ahmed, H., & McCallum, B. (2006). Genetic diversity of Gibberella zeae isolates from Manitoba. Plant Disease, 90, 1337–1342.

    CAS  Article  Google Scholar 

  16. Ferriol, M., Pico, M. B., & Nuez, F. (2003). Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution, 50, 227–238.

    CAS  Article  Google Scholar 

  17. Holmes, G. J., Main, C. E., & Keever, Z. T. (2004). Cucurbit downy mildew: a unique pathosystem for disease forecasting. In P. T. N. Spencer-Phillips & M. Jeger (Eds.), Advances in downy mildew research (Vol. 2, pp. 69–80). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  18. Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801–1806.

    CAS  PubMed  Article  Google Scholar 

  19. Lamour, K. H., Mudge, J., Gobena, D., Hurtado-Gonzales, O. P., Schmutz, J., Kuo, A., et al. (2012). Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Molecular Plant-Microbe Interactions, 25, 1350–1360.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Lebeda, A. (1999). Pseudoperonospora cubensis on Cucumis spp. and Cucurbita spp.—resistance breeding aspects. Acta Horticulturae, 492, 363–370.

    Google Scholar 

  21. Lebeda, A., & Cohen, Y. (2011). Cucurbit downy mildew (Pseudoperonospora cubensis)- biology, ecology, epidemiology, host-pathogen interaction and control. European Journal of Plant Pathology, 129, 157–192.

    Article  Google Scholar 

  22. Lebeda, A., & Gadasova, V. (2002). Pathogenic variation of Pseudoperonospora cubensis in the Czech Republic and some other European countries. Acta Horticulture, 588, 137–141.

    Google Scholar 

  23. Lebeda, A., & Widrlechner, M. P. (2003). A set of Cucurbitaceae taxa for differentiation of Pseudoperonospora cubensis pathotypes. Journal of Plant Disease and Protection, 110, 337–349.

    Google Scholar 

  24. Lebeda, A., Widrlechner, M. P., & Urban, J. (2006). Individual and population aspects of interactions between cucurbits and Pseudoperonospora cubensis: pathotypes and races. In G. J. Holmes (Ed.), Proceedings of Cucurbitaceae 2006 (pp. 453–467). North Carolina: Universal Press.

    Google Scholar 

  25. Lebeda, A., Hübschová, J., & Urban, J. (2010). Temporal population dynamics of Pseudoperonospora cubensis. In J. A. Thies, S. Kousik, & A. Levi (Eds.), Cucurbitaceae 2010 Proceedings (pp. 240–243). Alexandria: American Society for Horticultural Science.

    Google Scholar 

  26. Lebeda, A., Pavelkova, J., Urban, J., & Sedlakova, B. (2011). Distribution, host range and disease severity of Pseudoperonospora cubensis on Cucurbits in the Czech Republic. Journal of Phytopathology, 159, 589–596.

    Article  Google Scholar 

  27. Lebeda, A., Sedláková, B., & Pavelková, J. (2012). New hosts of Pseudoperonospora cubensis in the Czech Republic and pathogen virulence variation. In N. Sari, I. Solmaz, & V. Aras (Eds.), Cucurbitaceae 2012 Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. October 15-18th, 2012, Antalya, Turkey (pp. 768–776). Adana: Cukurova University.

    Google Scholar 

  28. Lebeda, A., Pavelkova, J., Sedlakova, B., & Urban, J. (2013). Structure and temporal shifts in virulence of Pseudoperonospora cubensis populations in the Czech Republic. Plant Pathology, 62, 336–345.

    Article  Google Scholar 

  29. Levi, A., Thomas, C. E., Simmons, A. M., & Thies, J. A. (2005). Analysis based on RAPD and ISSR markers reveals closer similarities among Citrullus and Cucumis species than with Praecitrullus fistulosus (Stocks) Pangalo. Genetic Resources and Crop Evolution, 52, 465–472.

    CAS  Article  Google Scholar 

  30. Lewontin, R. C. (1972). The apportonment of human diversity. Evolutionary Biology, 6, 381–398.

    Article  Google Scholar 

  31. Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 103, 455–461.

    CAS  Article  Google Scholar 

  32. Lin, Z. X., Zhang, X. L., & Nie, Y. C. (2004). Evaluation of application of a new molecular marker SRAP on analysis of F2 segregation population and genetic diversity in cotton. Acta Biochimica et Biophysica Sinica, 31, 622–626.

    CAS  Google Scholar 

  33. Lin, Z., He, D., Zhang, X., Nie, Y., Guo, X., Feng, C., & Stewart, J. M. D. (2005). Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breeding, 124, 180–187.

    CAS  Article  Google Scholar 

  34. Liu, K. J., & Muse, S. V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21, 2128–2129.

    CAS  PubMed  Article  Google Scholar 

  35. Martins-Lopes, P., Lima-Brito, J., Gomes, S., Meirinhos, J., Santos, L., & Guedes-Pinto, H. (2007). RAPD and ISSR molecular markers in Olea europaea L.: variability and molecular cultivar identification. Genetic Resource Crop Evolution, 54, 117–128.

    CAS  Article  Google Scholar 

  36. Mitchell, M. N., Ocamb, C. M., Grunwald, N. J., Mancino, L. E., & Gent, D. H. (2011). Genetic and pathogenic relatedness of Pseudoperonospora cubensis and P. humuli. Phytopathology, 101, 805–818.

    CAS  PubMed  Article  Google Scholar 

  37. Nei, M. (1973). The theory and estimation of genetic distance. In N. E. Morton (Ed.), Genetic structure of populations (pp. 45–54). Honolulu: University Press of Hawaii.

    Google Scholar 

  38. Page, R. D. M. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Application in Bioscience, 12, 357–358.

    CAS  Google Scholar 

  39. Palti, J., & Cohen, Y. (1980). Downy mildew of cucurbits (Pseudoperonospora cubensis)—the fungus and its hosts, distribution, epidemiology and control. Phytoparasitica, 8, 109–147.

    Article  Google Scholar 

  40. Pavelkova, J., Lebeda, A., & Sedlakova, B. (2011). First report of Pseudoperonospora cubensis on Cucurbita moschata in the Czech Republic. Plant Disease, 95, 878–879.

    Article  Google Scholar 

  41. Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537–2539.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Pritchard, J. K., & Wen, W. (2003). Documentation for STRUCTURE Software (eds).

  43. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Quesada-Ocampo, L. M., Granke, L. L., Olsen, J., Gutting, H. C., Runge, F., Thines, M., Lebeda, A., & Hausbeck, M. K. (2012). The genetic structure of Pseudoperonospora cubensis populations. Plant Disease, 96, 1459–1470.

    CAS  Article  Google Scholar 

  45. Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137–138.

    Article  Google Scholar 

  46. Runge, F., Choi, Y. J., & Thines, M. (2011). Phylogenetic investigations in the genus Pseudoperonospora reveal overlooked species and cryptic diversity in the P. cubensis species cluster. European Journal of Plant Pathology, 129, 135–146.

    Article  Google Scholar 

  47. Sarris, P., Abdelhalim, M., Kitner, M., Skandalis, N., Panopoulos, N., Doulis, A., & Lebeda, A. (2009). Molecular polymorphisms between populations of Pseudoperonospora cubensis from Greece and the Czech Republic and the phytopathological and phylogenetic implications. Plant Pathology, 58, 933–943.

    CAS  Article  Google Scholar 

  48. Savory, E. A., Granke, L. L., Quesada-Ocampo, L. M., Varbanova, M., Hausbeck, M. K., & Day, B. (2011). The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular Plant Pathology, 12, 217–226.

    PubMed  Article  Google Scholar 

  49. Savory, E. A., Adhikari, B. N., Hamilton, J. P., Vaillancourt, B., Buell, C. R., & Day, B. (2012a). mRNA-Seq analysis of the Pseudoperonospora cubensis transcriptome during cucumber (Cucumis sativus L.) infection. PLoS ONE, 7, e35796.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. Savory, E. A., Zou, C., Adhikari, B. N., Hamilton, J. P., Buell, C. R., Shiu, S. H., & Day, B. (2012b). Alternative splicing of a multi-drug transporter from Pseudoperonospora cubensis generates an RXLR effector protein that elicits a rapid cell death. PLoS ONE, 7, e34701.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. Soliani, C., Rondan-Dueñas, J., Chiappero, M. B., Martínez, M., García, E., & Garcenal, C. N. (2010). Genetic relationships among populations of Aedes aegypti from Uruguay and northeastern Argentina inferred from ISSR-PCR. Medical and Veterinary Entomology, 24, 316–323.

    CAS  PubMed  Google Scholar 

  52. Thomas, C. E., Inaba, T., & Cohen, Y. (1987). Physiological specialization in Pseudoperonospora cubensis. Phytopathology, 77, 1621–1624.

    Article  Google Scholar 

  53. Thomas, A., Carbone, I., & Ojiambo, P. (2013). Occurrence of the A2 mating type of Pseudoperonospora cubensis in the United States. Phytopathology, 103, 145–145.

    Article  Google Scholar 

  54. Urban, J., & Lebeda, A. (2007). Variation of fungicide resistance in Czech populations of Pseudoperonospora cubensis. Journal of Phytopathology, 155, 143–151.

    CAS  Article  Google Scholar 

  55. Voglmayr, H. (2008). Progress and challenges in systematics of downy mildews and white blister rusts: new insights from genes and morphology. European Journal of Plant Pathology, 122, 3–18.

    Article  Google Scholar 

  56. Yeboah, M. A., Chen, X. H., Feng, C. R., Liang, G. H., & Gu, M. H. (2007). A genetic linkage map of cucumber (Cucumis sativus L) combining SRAP and ISSR markers. African Journal of Biotechology, 6, 2784–2791.

    CAS  Google Scholar 

  57. Yeh, F. C., Yang, R. C., & Boyle, T. (1999). Popgene, version 1.31. (eds). Edmonton: Centre for International Forestry Research and University of Alberta.

  58. Zhang, Y. J., Pu, Z. J., Qin, Z. W., Zhou, X. Y., Liu, D., Dai, L. T., & Wang, W. B. (2012). A study on the overwintering of cucumber downy mildew oospores in China. Journal of Phytopathology, 160, 469–474.

    Article  Google Scholar 

Download references

Acknowledgments

The research of IP and OB, FM, YC, FC was supported by Republic of Turkey Ministry of Food, Agriculture and Livestock Projects (TAGEM-BS-10/10-11/02-09). MK and AL were supported by Palacký University funds (IGA PrF-2014-001), by MSM 6198959215 (Ministry of Education, Youth and Sports of the Czech Republic) and QH 71229 (Czech Ministry of Agriculture).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ömür Baysal.

Additional information

İlknur Polat, Ömür Baysal, and Francesco Mercati have equal contributions on the studies.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Polat, İ., Baysal, Ö., Mercati, F. et al. Characterization of Pseudoperonospora cubensis isolates from Europe and Asia using ISSR and SRAP molecular markers. Eur J Plant Pathol 139, 641–653 (2014). https://doi.org/10.1007/s10658-014-0420-y

Download citation

Keywords

  • Cucumis sativus
  • Cucurbits
  • Cucurbit downy mildew
  • Genetic diversity
  • Pathotypes
  • Population structure
  • Mating type