Skip to main content
Log in

Occurrence, genetic diversity and pathogenicity characteristics of Pseudomonas viridiflava inducing alfalfa bacterial wilt and crown root rot disease in Iran

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Alfalfa (Medicago sativa), the world’s most influential forage crop, is infected by many diseases such as alfalfa bacterial wilt disease. The causal agent of bacterial crown and root rot and wilt disease is Pseudomonas viridiflava, which is a substantial pathogen of alfalfa worldwide. This pathogen spreads through the xylem and under field conditions, plants show growth stunting, chlorosis and wilting symptoms not previously reported. In this study- the first on Pseudomonas viridiflava on alfalfa from Iran, we have investigated the pathogenicity and genetic diversity of Pseudomonas viridiflava in some parts of Iran. To survey the causal agent of the disease, symptomatic plants were collected from the main alfalfa growing area. Pathogenicity of the collected strains was confirmed on alfalfa plants under green-house conditions using a completely randomized design. Determination of bacterial strains was done based on standard bacteriological methods and PCR assay using specific primers. Effects of bacterial strains on wet weight, dry weight, stem length and root length of infected plants were measured and the data were analyzed by SAS software and Duncan’s assessment. The diversity of liquid cellular proteins of bacterial strains was examined on Polyacrylamide gel. To delineate of genetic diversity the total DNA was drawn out. Fourteen random primers were used in a RAPD test. To sketch the dendrogram, RAPD fragments were used to calculate genetic diversity with NTSYS software. This data showed pathogenicity and genetic diversity of Pseudomonas viridiflava in Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfano, J. R., & Collmer, A. (1997). The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. Journal of Bacteriology, 179(18), 5655–5662.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alippi, A. M., Wolcan, S., & Dal Bo, E. (1999). First report of bacterial leaf necrosis of basil caused by Pseudomonas viridiflava in Argentina. Plant Disease, 83, 876.

    Article  Google Scholar 

  • Anzai, Y., Kim, H., Park, J. Y., Wakabayashi, H., & Oyaizu, H. (2000). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. International Journal of Systematic and Evolutionary Microbiology, 50, 1563–1589.

    Article  CAS  PubMed  Google Scholar 

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (2002). A Compendium of Methods from Current Protocols in Molecular Biology. New Jersey: John Wiley & Sons.

    Google Scholar 

  • Babalola, O. O. (2003). Molecular techniques: An overview of methods for the detection of bacteria. African Journal of Biotechnology, 2, 710–713.

    CAS  Google Scholar 

  • Billing, E. (1970). Pseudomonas viridiflava. (Burkholder, 1930., Clara, 1934). Journal of Applied Bacteriology, 33, 492–500.

    Article  CAS  PubMed  Google Scholar 

  • Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey’s Manual of Systematic Bacteriology: Part B (2nd ed.). New York: Springer Pub.

    Book  Google Scholar 

  • Brown, S. E., Reilley, A. A., Knudson, D. L., & Ishimaru, C. A. (2002). Genomic fingerprinting of virulent and avirulent strains of Clavibacter michiganensis subspecies sepedonicus. Current Microbiology, 44, 112–119.

    Article  CAS  PubMed  Google Scholar 

  • Burr, T., & Katz, B. H. (1983). Isolation of Agrobacterium tumefaciens biovar 3 from grapevine galls and sap, and vineyard soil. Phytopathology, 73, 163–165.

    Article  Google Scholar 

  • Dunn, M. J. (1993). Gel Electrophoresis Proteins. BIOS: Scientific Publishers Limited.

    Google Scholar 

  • Field, D., & Wills, C. (1998). Abundant microsatellite polymorphism in Saccharomyces cerevisiae and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. Proceedings of the National Academy of the United States of America, 95, 1647–1652.

    Article  CAS  Google Scholar 

  • Goss, E. M., Kreitman, M., & Bergelson, J. (2004). Genetic diversity, recombination and cryptic clades in Pseudomonas viridiflava infecting natural populations of Arabidopsis thaliana. Journal of Genetics, 169, 21–35.

    Article  Google Scholar 

  • Goumans, D. E., & Chatzaki, A. K. (1998). Characterization and host range evaluation of pseudomonas viridiflava from melon, blite, tomato, chrysanthemum and eggplant. European Journal of Plant Pathologgy, 104(2), 181–188.

    Article  Google Scholar 

  • Graham, J. H., Stuteville, D. L., Frosheiser, F. I., & Erwin, D. C. (1979). A Compendium of Alfalfa Diseases. Minnesota: American Phytopathological Society.

    Google Scholar 

  • Henson, J. M., & French, R. (1993). The polymerase chain-reaction and plant-disease diagnosis. Annual Review of Phytopathology, 31, 81–109.

    Article  CAS  PubMed  Google Scholar 

  • Horita, M., & Tsuchiya, K. (2001). Genetic diversity of Japanese strains of Ralstonia solanacearum. Phytopathology, 91, 399–407.

    Article  CAS  PubMed  Google Scholar 

  • Hugh, R., & Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. Journal of Bacteriology, 66, 24–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones, J. B., Jones, J. P., McCarter, S. M., & Stall, R. E. (1984). Pseudomonas viridiflava: causal agent of bacterial leaf blight of Tomato. Journal of Plant Disease, 60(4), 341–342.

    Article  Google Scholar 

  • Klement, Z., Farkas, G. L., & Loverekovick, L. (1964). Hypersensitive reaction induce by phytopathogenic bacteria in tobacco leaf. Phytopathology, 54, 474–477.

    Google Scholar 

  • Klement, Z., Rudolph, K., & Sands, D. C. (1990). Methods in Phytoacteriology. Budapest: Akademiai Kiado.

    Google Scholar 

  • Kovacs, N. (1956). Identification of Pseudomonas solanacearum by the oxidase reaction. Nature, 178, 703.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (lond), 227, 680–685.

    Article  CAS  Google Scholar 

  • Lasker, B. A. (2002). Evaluation of performance of four genotypic methods for studying the genetic epidemiology of Aspergillus famigatus isolates. Journal of Clinical Microbiology, 40, 2886–2892.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lukezic, F. L., Leath, K. T., & Levine, R. G. (1983). Pseudomonas viridiflava associated with root and crown rot of alfalfa and wilt of birdsfoot trefoil. Plant Disease, 67, 808–811.

    Article  Google Scholar 

  • Micheli, M. R., Bova, R., Pascale, E., & D’Ambrosio, E. (1994). Reproducible DNA fingerprinting with the random amplified polymorphic DNA (RAPD) method. Nucleic Acids Research, 22, 1921–1922.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munnecke, D. E., Chandler, P. A., & Starr, M. P. (1963). Hairy root (Agrobacterium rhizogenes) of field roses. Phytopathology, 53, 788–799.

    Google Scholar 

  • Murillo, J., & Sesma, A. (2001). The biochemistry and molecular genetics of host range definition in Pseudomonas syringae. Journal of Phytopathology Mediterranea, 40, 3–26.

    CAS  Google Scholar 

  • Palleroni, N. J. (1984). Genus I Pseudomonas. In N. R. Krieg & J. G. Holt (Eds.), Bergey’s Manual of Systematic Bacteriology (1st ed., Vol. 1, pp. 141–199). Baltimore: The Williams& Wilkins Co.

    Google Scholar 

  • Romeiro, R., Karr, A., & Goodman, R. (1981). Isolation of A factor from apple that agglutinates Erwinia amylovora. Plant Physiology, 68, 722–777.

    Article  Google Scholar 

  • Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria. Minnesota: American Phytopathological Society.

    Google Scholar 

  • Stanley, R. M. (1990). Experimental Techniques in Bacterial Genetics. Burlington: Jones & Bartlett Press.

    Google Scholar 

  • Stuteville, D. L., & Erwin, D. C. (1990). Compendium of Alfalfa Diseases. Minnesota: American Phytopathological Society.

    Google Scholar 

  • Suslow, T. V., Schroth, M. N., & Isaka, M. (1982). Application of a rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72, 917–918.

    Article  Google Scholar 

  • Undersander, D., Vassalotti, P., & Cosgrove, D. (1997). Alfalfa: germination and growth. Publication A3681. Wisconsin: University of Wisconsin Cooperative Extension Publishing.

  • Woese, C. R., Stacketbrandt, E., Macke, T. J., & Fox, G. E. (1995). A phylogenetic definition of the major eubacterial taxa. Systematic Applied Microbiology, 6, 143–151.

    Article  Google Scholar 

  • Young, D. H., & Sequeira, L. (1986). Binding of pseudomonas solanacearum fimbriae to tobacco leaf cell walls and its inhibition by bacterial extracellular polysaccharides. Physiological and Molecular Plant Pathology, 28, 393–402.

    Article  CAS  Google Scholar 

  • Zabeau, M., & Vos, P. (1993). Selective restriction fragment amplification: a general method for DNA fingerprinting. Munich: European Plant office.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jalal Soltani (PhD), Bacteriology assistant professor of Bu-Ali Sina University of Hamedan, Dr. Seyed Hadi Mirvahedi (PhD) and Mrs. Connie Nisbet for their precious comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Khodakaramian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heydari, A., Khodakaramian, G. & Zafari, D. Occurrence, genetic diversity and pathogenicity characteristics of Pseudomonas viridiflava inducing alfalfa bacterial wilt and crown root rot disease in Iran. Eur J Plant Pathol 139, 299–307 (2014). https://doi.org/10.1007/s10658-014-0386-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0386-9

Keywords

Navigation