European Journal of Plant Pathology

, Volume 138, Issue 3, pp 667–677 | Cite as

Spatial eco-evolutionary feedback in plant-pathogen interactions

  • Ayco J. M. Tack
  • Anna-Liisa LaineEmail author


In recent years the potential for evolutionary change to drive ecological dynamics, and vice versa, has been widely recognized. However, the convincing examples of eco-evolutionary dynamics mainly stem from highly artificial experimental systems, with conspicuously few examples contributed by field systems. While rarely considered in the eco-evolutionary literature, the gene-for-gene hypothesis inherently recognizes the tight link between evolutionary and ecological dynamics. The boom-and-bust dynamics of some agricultural pathogens are an extreme demonstration of this. In this perspective, we place plant-pathogen systems in a spatial eco-evolutionary framework, which recognizes that ecology and evolution are tightly linked, take place at the same time scale and are strongly influenced by spatial structure. Specifically, we: i) exemplify how the ecological process of dispersal modifies rapid local coevolutionary dynamics and thereby shapes spatial variation in resistance, infectivity, and local adaptation; and ii) illustrate how the outcome of coevolution (spatial distribution in resistance, infectivity and local adaptation) drives ecological metapopulation processes. Overall, we conclude that both agricultural and wild pathosystems provide a unique illustration of the high relevance of spatial eco-evolutionary feedback in understanding species interactions.


Coevolution Eco-evolutionary dynamics Eco-evolutionary feedback Host-pathogen interactions Metapopulation Pathosystem 



This work was supported by funding from the Academy of Finland (Grant Nos 250444, 136393, 133499) and European Research Council (PATHEVOL; 281517) to ALL and a grant from the Academy of Finland to AT (Grant No 265761).


  1. Agrawal, A. A., Hastings, A. P., Johnson, M. T. J., Maron, J. L., & Salminen, J.-P. (2012). Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science, 338, 113–116.PubMedGoogle Scholar
  2. Agrios, G. N. (2005). Plant pathology (5th ed.). New York: Academic.Google Scholar
  3. Anagnostakis, S. L. (1987). Chestnut blight: the classical problem of an introduced pathogen. Mycologia, 79, 23–37.Google Scholar
  4. Antonovics, J. (1992). Toward community genetics. In R. S. Fritz & E. L. Simms (Eds.), Plant resistance to herbivores and pathogens: ecology, evolution and genetics (pp. 426–449). Chicago: University of Chicago Press.Google Scholar
  5. Antonovics, J., Thrall, P. H., Jarosz, A. M., & Stratton, D. (1994). Ecological genetics of metapopulations: the Silene-Ustilago plant-pathogen system. In L. A. Real (Ed.), Ecological genetics (pp. 146–170). Princeton: Princeton University Press.Google Scholar
  6. Bailey, J. K., Schweitzer, J. A., Úbeda, F., Koricheva, J., LeRoy, C. J., Madritch, M. D., et al. (2009). From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364, 1607–1616.Google Scholar
  7. Barbour, R. C., O’Reilly-Wapstra, J. M., De Little, D. W., Jordan, G. J., Steane, D. A., Humphreys, J. R., et al. (2009). A geographic mosaic of genetic variation within a foundation tree species and its community-level consequences. Ecology, 90, 1762–1772.PubMedGoogle Scholar
  8. Bassar, R. D., Marshall, M. C., López-Sepulcre, A., Zandonà, E., Auer, S. K., Travis, J., et al. (2010). Local adaptation in Trinidadian guppies alters ecosystem processes. Proceedings of the National Academy of Sciences of the United States of America, 107, 3616–3621.PubMedCentralPubMedGoogle Scholar
  9. Becks, L., Ellner, S. P., Jones, L. E., & Hairston, N. G., Jr. (2010). Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecology Letters, 13, 989–997.PubMedGoogle Scholar
  10. Bergelson, J., & Purrington, C. B. (1996). Surveying patterns in the cost of resistance in plants. The American Naturalist, 148, 536–558.Google Scholar
  11. Biere, A., & Antonovics, J. (1996). Sex-specific costs of resistance to the fungal pathogen Ustilago violacea (Microbotryum violaceum) in Silene alba. Evolution, 50, 1098–1110.Google Scholar
  12. Biffen, R. H. (1905). Mendel’s laws of inheritance and wheat breeding. The Journal of Agricultural Science, 1, 4–48.Google Scholar
  13. Bohannan, B. J. M., & Lenski, R. E. (2000). Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters, 3, 362–377.Google Scholar
  14. Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541.PubMedGoogle Scholar
  15. Brown, J. K. M., & Tellier, A. (2011). Plant-parasite coevolution: bridging the gap between genetics and ecology. Annual Review of Phytopathology, 49, 345–367.PubMedGoogle Scholar
  16. Burdon, J. J. (1987). Diseases and plant population biology. Cambridge: Cambridge University Press.Google Scholar
  17. Burdon, J. J. (1993). The structure of pathogen populations in natural plant communities. Annual Review of Phytopathology, 31, 305–323.Google Scholar
  18. Burdon, J. J., & Thrall, P. H. (2013). What have we learned from studies of wild plant-pathogen associations?—the dynamic interplay of time, space and life-history. European Journal of Plant Pathology. doi: 10.1007/s10658-10013-10265-10659.Google Scholar
  19. Burdon, J. J., Ericson, L., & Müller, W. J. (1995). Temporal and spatial changes in a metapopulation of the rust pathogen Triphragmium ulmariae and its host, Filipendula ulmaria. Journal of Ecology, 83, 979–989.Google Scholar
  20. Busby, P. E., Newcombe, G., Dirzo, R., & Whitham, T. G. (2013). Genetic basis of pathogen community structure for foundation tree species in a common garden and in the wild. Journal of Ecology, 101, 867–877.Google Scholar
  21. Capelle, J., & Neema, C. (2005). Local adaptation and population structure at a micro-geographical scale of a fungal parasite on its host plant. Journal of Evolutionary Biology, 18, 1445–1454.PubMedGoogle Scholar
  22. Carlsson, U., & Elmqvist, T. (1992). Epidemiology of anther-smut disease (Microbotryum violaceum) and numeric regulation of populations of Silene dioica. Oecologia, 90, 509–517.Google Scholar
  23. Carlsson-Granér, U. (1997). Anther-smut disease in Silene dioica: variation in susceptibility among genotypes and populations, and patterns of disease within populations. Evolution, 51, 1416–1426.Google Scholar
  24. Carlsson-Granér, U., & Thrall, P. H. (2002). The spatial distribution of plant populations, disease dynamics and evolution of resistance. Oikos, 97, 97–110.Google Scholar
  25. Carlsson-Granér, U., Burdon, J. J., & Thrall, P. H. (1999). Host resistance and pathogen virulence across a plant hybrid zone. Oecologia, 121, 339–347.Google Scholar
  26. CIMMYT (2005). Sounding the alarm on global stem rust.
  27. Deadman, M. L. (2006). Epidemiological consequences of plant disease resistance. In B. M. Cooke, D. Gareth Jones, & B. Kaye (Eds.), The epidemiology of plant diseases (2nd ed., pp. 139–157). Dordrecht: Springer.Google Scholar
  28. Desprez-Loustau, M.-L., Robin, C., Buée, M., Courtecuisse, R., Garbaye, J., Suffert, F., et al. (2007). The fungal dimension of biological invasions. Trends in Ecology & Evolution, 22, 472–480.Google Scholar
  29. Ellner, S. P. (2013). Rapid evolution: from genes to communities, and back again? Functional Ecology, 27, 1087–1099.Google Scholar
  30. Ericson, L., Burdon, J. J., & Müller, W. J. (1999). Spatial and temporal dynamics of epidemics of the rust fungus Uromyces valerianae on populations of its host Valeriana salina. Journal of Ecology, 87, 649–658.Google Scholar
  31. Ezard, T. H. G., Côté, S. D., & Pelletier, F. (2009). Eco-evolutionary dynamics: disentangling phenotypic, environmental and population fluctuations. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364, 1491–1498.Google Scholar
  32. Farkas, T. E., Mononen, T., Comeault, A. A., Hanski, I., & Nosil, P. (2013). Evolution of camouflage drives rapid ecological change in an insect community. Current Biology, 23, 1835–1843.PubMedGoogle Scholar
  33. Flor, H. H. (1942). Inheritance of pathogenicity in Melampsora lini. Phytopathology, 32, 653–669.Google Scholar
  34. Flor, H. H. (1956). The complementary genic systems in flax and flax rust. Advances in Genetics, 8, 29–54.Google Scholar
  35. Fussmann, G. F., Loreau, M., & Abrams, P. A. (2007). Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology, 21, 465–477.Google Scholar
  36. Gandon, S. (2002). Local adaptation and the geometry of host-parasite coevolution. Ecology Letters, 5, 246–256.Google Scholar
  37. Gandon, S., & Michalakis, Y. (2002). Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. Journal of Evolutionary Biology, 15, 451–462.Google Scholar
  38. Gandon, S., Capowiez, Y., Dubois, Y., Michalakis, Y., & Olivieri, I. (1996). Local adaptation and gene-for-gene coevolution in a metapopulation model. Proceedings of the Royal Society B: Biological Sciences, 263, 1003–1009.Google Scholar
  39. Gibert, J. P., Pires, M. M., Thompson, J. N., & Guimarães, P. R. (2013). The spatial structure of antagonistic species affects coevolution in predictable ways. The American Naturalist, 182, 578–591.PubMedGoogle Scholar
  40. Giles, B. E., Pettersson, T. M., Carlsson-Granér, U., & Ingvarsson, P. K. (2006). Natural selection on floral traits of female Silene dioica by a sexually transmitted disease. New Phytologist, 169, 729–739.PubMedGoogle Scholar
  41. Grant, P. R., & Grant, B. R. (2006). Evolution of character displacement in Darwin’s finches. Science, 313, 224–226.PubMedGoogle Scholar
  42. Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T., & Fox, J. A. (2005). Rapid evolution and the convergence of ecological and evolutionary time. Ecology Letters, 8, 1114–1127.Google Scholar
  43. Hanski, I. A. (2011). Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly. Proceedings of the National Academy of Sciences, 108, 14397–14404.Google Scholar
  44. Hanski, I. (2012). Eco-evolutionary dynamics in a changing world. Annals of the New York Academy of Sciences, 1249, 1–17.PubMedGoogle Scholar
  45. Hanski, I., & Gaggiotti, O. (2004). Ecology, genetics and evolution of metapopulations. Amsterdam: Elsevier Academic Press.Google Scholar
  46. Hanski, I., Mononen, T., & Ovaskainen, O. (2011). Eco-evolutionary metapopulation dynamics and the spatial scale of adaptation. The American Naturalist, 177, 29–43.PubMedGoogle Scholar
  47. Harmon, L. J., Matthews, B., Des Roches, S., Chase, J. M., Shurin, J. B., & Schluter, D. (2009). Evolutionary diversification in stickleback affects ecosystem functioning. Nature, 458, 1167–1170.PubMedGoogle Scholar
  48. Hutchinson, G. E. (1965). The ecological theater and the evolutionary play. New Haven: Yale University Press.Google Scholar
  49. Janzen, D. H. (1980). When is it coevolution. Evolution, 34, 611–612.Google Scholar
  50. Jarosz, A. M., & Burdon, J. J. (1991). Host-pathogen interactions in natural populations of Linum marginale and Melampsora lini: II. Local and regional variation in patterns of resistance and racial structure. Evolution, 45, 1618–1627.Google Scholar
  51. Jones, E. I., Ferrière, R., & Bronstein, J. L. (2009). Eco-evolutionary dynamics of mutualists and exploiters. The American Naturalist, 174, 780–794.PubMedGoogle Scholar
  52. Kaltz, O., & Shykoff, J. A. (1998). Local adaptation in host-parasite systems. Heredity, 81, 361–370.Google Scholar
  53. Kaltz, O., Gandon, S., Michalakis, Y., & Shykoff, J. A. (1999). Local maladaptation in the anther-smut fungus Microbotryum violaceum to its host plant Silene latifolia: evidence from a cross-inoculation experiment. Evolution, 53, 395–407.Google Scholar
  54. Laine, A.-L. (2004). Resistance variation within and among host populations in a plant–pathogen metapopulation: implications for regional pathogen dynamics. Journal of Ecology, 92, 990–1000.Google Scholar
  55. Laine, A.-L. (2005). Spatial scale of local adaptation in a plant-pathogen metapopulation. Journal of Evolutionary Biology, 18, 930–938.PubMedGoogle Scholar
  56. Laine, A.-L., & Hanski, I. (2006). Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. Journal of Ecology, 94, 217–226.Google Scholar
  57. Laine, A.-L., Burdon, J. J., Dodds, P. N., & Thrall, P. H. (2011). Spatial variation in disease resistance: from molecules to metapopulations. Journal of Ecology, 99, 96–112.PubMedCentralPubMedGoogle Scholar
  58. Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends in Ecology & Evolution, 17, 183–189.Google Scholar
  59. Losos, J. B. (1994). Integrative approaches to evolutionary ecology: Anolis lizards as model systems. Annual Review of Ecology and Systematics, 25, 467–493.Google Scholar
  60. Luo, S., & Koelle, K. (2013). Navigating the devious course of evolution: the importance of mechanistic models for identifying eco-evolutionary dynamics in nature. The American Naturalist, 181, S58–S75.PubMedGoogle Scholar
  61. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.PubMedGoogle Scholar
  62. Mundt, C. C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology, 40, 381–410.PubMedGoogle Scholar
  63. Pelletier, F., Garant, D., & Hendry, A. P. (2009). Eco-evolutionary dynamics. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364, 1483–1489.Google Scholar
  64. Peterson, P. D., Leonard, K. J., Roelfs, A. P., & Sutton, T. B. (2005). Effect of barberry eradication on changes in populations of Puccinia graminis in Minnesota. Plant Disease, 89, 935–940.Google Scholar
  65. Petrželová, I., & Lebeda, A. (2004). Occurrence of Bremia lactucae in natural populations of Lactuca serriola. Journal of Phytopathology, 152, 391–398.Google Scholar
  66. Pimentel, D. (1968). Population regulation and genetic feedback: evolution provides foundation for control of herbivore, parasite, and predator numbers in nature. Science, 159, 1432–1437.PubMedGoogle Scholar
  67. Post, D. M., & Palkovacs, E. P. (2009). Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364, 1629–1640.Google Scholar
  68. Pretorius, Z. A., Singh, R. P., Wagoire, W. W., & Payne, T. S. (2000). Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Disease, 84, 203.Google Scholar
  69. Reznick, D. N. (2013). A critical look at reciprocity in ecology and evolution: introduction to the symposium. The American Naturalist, 181, S1–S8.PubMedGoogle Scholar
  70. Roelfs, A. P. (1982). Effects of barberry eradication on stem rust in the United States. Plant Disease, 66, 177–181.Google Scholar
  71. Roslin, T., Laine, A.-L., & Gripenberg, S. (2007). Spatial population structure in an obligate plant pathogen colonizing oak Quercus robur. Functional Ecology, 21, 1168–1177.Google Scholar
  72. Sacristán, S., Vigouroux, M., Pedersen, C., Skamnioti, P., Thordal-Christensen, H., Micali, C., et al. (2009). Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons. PLoS ONE, 4, e7463.PubMedCentralPubMedGoogle Scholar
  73. Schoener, T. W. (2011). The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science, 331, 426–429.PubMedGoogle Scholar
  74. Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Bhavani, S., Njau, P., et al. (2011). The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology, 49, 465–481.PubMedGoogle Scholar
  75. Slobodkin, L. B. (1961). Growth and regulation of animal populations. New York: Holt, Rinehart and Winston.Google Scholar
  76. Smith, D. L., Ericson, L., & Burdon, J. J. (2011). Co-evolutionary hot and cold spots of selective pressure move in space and time. Journal of Ecology, 99, 634–641.Google Scholar
  77. Sprague, S. J., Balesdent, M.-H., Brun, H., Hayden, H. L., Marcroft, S. J., Pinochet, X., et al. (2006). Major gene resistance in Brassica napus (oilseed rape) is overcome by changes in virulence of populations of Leptosphaeria maculans in France and Australia. European Journal of Plant Pathology, 114, 33–40.Google Scholar
  78. Springer, Y. P. (2007). Clinal resistance structure and pathogen local adaptation in a serpentine flax-flax rust interaction. Evolution, 61, 1812–1822.PubMedGoogle Scholar
  79. Stokstad, E. (2007). Deadly wheat fungus threatens world’s breadbaskets. Science, 315, 1786–1787.PubMedGoogle Scholar
  80. Strauss, S. Y. (2013). Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. Oikos. doi: 10.1111/j.1600-0706.2013.01093.x.
  81. Susi, H., & Laine, A.-L. (2013). Pathogen life-history trade-offs revealed in allopatry. Evolution, 67, 3362–3370.PubMedGoogle Scholar
  82. Tack, A. J. M., Thrall, P. H., Barrett, L. G., Burdon, J. J., & Laine, A.-L. (2012). Variation in infectivity and aggressiveness in space and time in wild host–pathogen systems: causes and consequences. Journal of Evolutionary Biology, 25, 1918–1936.PubMedCentralPubMedGoogle Scholar
  83. Tack, A. J. M., Hakala, J., Petäjä, T., Kulmala, M., & Laine, A.-L. (2013a). Genotype and spatial structure shape pathogen dispersal and disease dynamics at small spatial scales. Ecology. doi: 10.1890/1813-0518.1891.Google Scholar
  84. Tack, A. J. M., Horns, F., & Laine, A.-L. (2013b). The impact of spatial scale and habitat configuration on patterns of trait variation and local adaptation in a wild plant parasite. Evolution. doi: 10.1111/evo.12239.PubMedCentralPubMedGoogle Scholar
  85. Tellier, A., & Brown, J. K. M. (2011). Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions. BMC Evolutionary Biology, 11, 319.PubMedCentralPubMedGoogle Scholar
  86. Thompson, J. N. (2005). The geographic mosaic of coevolution. Chicago: University of Chicago Press.Google Scholar
  87. Thompson, J. N. (2013). Relentless evolution. Chicago: University of Chicago Press.Google Scholar
  88. Thompson, J. N., & Burdon, J. J. (1992). Gene-for-gene coevolution between plants and parasites. Nature, 360, 121–125.Google Scholar
  89. Thrall, P. H., & Antonovics, J. (1995). Theoretical and empirical studies of metapopulations: population and genetic dynamics of the Silene–Ustilago system. Canadian Journal of Botany, 73, S1249–S1258.Google Scholar
  90. Thrall, P. H., & Burdon, J. J. (1997). Host-pathogen dynamics in a metapopulation context: the ecological and evolutionary consequences of being spatial. Journal of Ecology, 85, 743–753.Google Scholar
  91. Thrall, P. H., & Burdon, J. J. (1999). The spatial scale of pathogen dispersal: consequences for disease dynamics and persistence. Evolutionary Ecology Research, 1, 681–701.Google Scholar
  92. Thrall, P. H., & Burdon, J. J. (2002). Evolution of gene-for-gene systems in metapopulations: the effect of spatial scale of host and pathogen dispersal. Plant Pathology, 51, 169–184.Google Scholar
  93. Thrall, P. H., & Jarosz, A. M. (1994). Host-pathogen dynamics in experimental populations of Silene alba and Ustilago violacea. II. Experimental tests of theoretical models. Journal of Ecology, 82, 561–570.Google Scholar
  94. Thrall, P. H., Burdon, J. J., & Bock, C. H. (2001). Short-term epidemic dynamics in the Cakile maritima–Alternaria brassicicola host–pathogen association. Journal of Ecology, 89, 723–735.Google Scholar
  95. Thrall, P. H., Burdon, J. J., & Bever, J. D. (2002). Local adaptation in the Linum marginale—Melampsora lini host-pathogen interaction. Evolution, 56, 1340–1351.PubMedGoogle Scholar
  96. Thrall, P. H., Laine, A.-L., Ravensdale, M., Nemri, A., Dodds, P. N., Barrett, L. G., et al. (2012). Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecology Letters, 15, 425–435.PubMedCentralPubMedGoogle Scholar
  97. Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M., & Bergelson, J. (2003). Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 423, 74–77.PubMedGoogle Scholar
  98. Toju, H. (2011). Weevils and camellias in a Darwin’s race: model system for the study of eco-evolutionary interactions between species. Ecological Research, 26, 239–251.Google Scholar
  99. Van de Wouw, A. P., Cozijnsen, A. J., Hane, J. K., Brunner, P. C., McDonald, B. A., Oliver, R. P., et al. (2010a). Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathogens, 6, e1001180.PubMedCentralPubMedGoogle Scholar
  100. Van de Wouw, A. P., Stonard, J. F., Howlett, B. J., West, J. S., Fitt, B. D. L., & Atkins, S. D. (2010b). Determining frequencies of avirulent alleles in airborne Leptosphaeria maculans inoculum using quantitative PCR. Plant Pathology, 59, 809–818.Google Scholar
  101. Vogwill, T., Fenton, A., & Brockhurst, M. A. (2010). How does spatial dispersal network affect the evolution of parasite local adaptation? Evolution, 64, 1795–1801.PubMedGoogle Scholar
  102. Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., Leroy, C. J., et al. (2006). A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews Genetics, 7, 510–523.PubMedGoogle Scholar
  103. Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology, 23, 251–273.Google Scholar
  104. Yahiaoui, N., Brunner, S., & Keller, B. (2006). Rapid generation of new powdery mildew resistance genes after wheat domestication. The Plant Journal, 47, 85–98.PubMedGoogle Scholar
  105. Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F., & Hairston, N. G., Jr. (2003). Rapid evolution drives ecological dynamics in a predator–prey system. Nature, 424, 303–306.PubMedGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  1. 1.Metapopulation Research Group, Department of BiosciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations