European Journal of Plant Pathology

, Volume 138, Issue 3, pp 529–547 | Cite as

Plant-virus interactions and the agro-ecological interface

  • H. M. AlexanderEmail author
  • K. E. Mauck
  • A. E. Whitfield
  • K. A. Garrett
  • C. M. Malmstrom


As a result of human activities, an ever-increasing portion of Earth’s natural landscapes now lie adjacent to agricultural lands. This border between wild and agricultural communities represents an agro-ecological interface, which may be populated with crop plants, weeds of crop systems, and non-crop plants that vary from exotic to native in origin. Plant viruses are important components of the agro-ecological interface because of their ubiquity, dispersal by arthropod vectors, and ability to colonize both crop and wild species. Here we provide an overview of research on plant-virus dynamics across this interface and suggest three research priorities: (1) an increased effort to identify and describe plant virus diversity and distribution in its entirety across agricultural and ecological boundaries; (2) multi-scale studies of virus transmission to develop predictive power in estimating virus propagation across landscapes; and (3) quantitative evaluation of the influence of viruses on plant fitness and populations in environmental contexts beyond crop fields. We close by emphasizing that agro-ecological interfaces are dynamic, influenced by the human-mediated redistribution of plants, vectors, and viruses around the world, climate change, and the development of new crops. Consideration of virus interactions within these environmentally complex systems promises new insight into virus, plant, and vector dynamics from molecular mechanisms to ecological consequences.


Agro-ecological interface Crop Plant fitness Plant virus Vector Wild plant 



This work was supported by 1) University of Kansas General Research Fund 2301545 (HMA), 2) National Science Foundation DDIG (DEB-1011122) and a grant from the Pennsylvania Soybean Board (KEM), 3) National Science Foundation CAREER grant IOS-0953786 (AEW), 4) CGIAR Research Program on Roots, Tubers and Bananas, Seed Degeneration Project (KAG), and 5) National Science Foundation grants IOS-0639139 & DEB-0843140, the Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494), USDA NIFA Sustainable Biofuels Program Award 2011-67009-30137 and AgBioResearch Hatch project MICL02055 (CMM). AEW and KAG also note that this is Contribution No. 13-325-J from the Kansas Agricultural Experiment Station. We thank PVEN colleagues and anonymous reviewers for helpful feedback.


  1. Abe, H., Tomitaka, Y., Shimoda, T., Seo, S., Sakurai, T., Kugimiya, S., et al. (2012). Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. Plant and Cell Physiology, 53(1), 204–212.PubMedGoogle Scholar
  2. Agindotan, B. O., Ahonsi, M. O., Domier, L. L., Gray, M. E., & Bradley, C. A. (2010). Application of sequence-independent amplification (SIA) for the RNA viruses in bioenergy crops. Journal of Virological Methods, 169(1), 119–128.PubMedGoogle Scholar
  3. Alexander, H. M. (2010). Disease in natural plant populations, communities, and ecosystems: insights into ecological and evolutionary processes. Plant Disease, 94(5), 492–503.Google Scholar
  4. Alexander, H. M., & Holt, R. D. (1998). The interaction between plant competition and disease. Perspectives in Plant Ecology, Evolution, and Systematics, 1(2), 206–220.Google Scholar
  5. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535–544.Google Scholar
  6. Antonovics, J., & Alexander, H. M. (1989). The concept of fitness in plant-fungal pathogen systems. In K. J. Leonard & W. E. Fry (Eds.), Plant disease epidemiology. Genetics, resistance, and management (Vol. 2, pp. 185–214). New York: McGraw-Hill.Google Scholar
  7. Badillo-Vargas, I. E., Rotenberg, D., Schneweis, D. J., Hiromasa, Y., Tomich, J. M., & Whitfield, A. E. (2012). Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to Tomato Spotted Wilt Virus infection. Journal of Virology, 86(16), 8793–8809.PubMedCentralPubMedGoogle Scholar
  8. Bedhomme, S., Lafforgue, G., & Elena, S. F. (2012). Multihost experimental evolution of a plant RNA virus reveals local adaptation and host-specific mutations. Molecular Biology and Evolution, 29(5), 1481–1492.PubMedGoogle Scholar
  9. Belliure, B., Janssen, A., Maris, P. C., Peters, D., & Sabelis, M. W. (2005). Herbivore arthropods benefit from vectoring plant viruses. Ecology Letters, 8(1), 70–79.Google Scholar
  10. Bever, J. D. (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157(3), 465–473.Google Scholar
  11. Bi, Y. Q., Tugume, A. K., & Valkonen, J. P. T. (2012). Small-RNA deep sequencing reveals Arctium tomentosum as a natural host of Alstroemeria virus X and a new putative Emaravirus. Plos One, 7(8).Google Scholar
  12. Biddle, J. M., Linde, C., & Godfree, R. C. (2012). Co-infection patterns and geographic distribution of a complex pathosystem targeted by pathogen-resistant plants. Ecological Applications, 22(1), 35–52.PubMedGoogle Scholar
  13. Biek, R., & Real, L. A. (2010). The landscape genetics of infectious disease emergence and spread. Molecular Ecology, 19(17), 3515–3531.PubMedCentralPubMedGoogle Scholar
  14. Blanc, S., & Drucker, M. (2011). Functions of virus and host factors during vector-mediated transmission. In C. Caranta, M. A. Arnada, M. Tepfer, & U. Lopez-Moya (Eds.), Recent advances in plant virology (pp. 103–120). Norfolk: Caister Academic Press.Google Scholar
  15. Blitzer, E. J., Dormann, C. F., Holzschuh, A., Klein, A. M., Rand, T. A., & Tscharntke, T. (2012). Spillover of functionally important organisms between managed and natural habitats. Agriculture, Ecosystems & Environment, 146(1), 34–43.Google Scholar
  16. Boncquet, P. A., & Stahl, C. F. (1917). Wild vegetation as a source of curly-top infection of sugar beets. Journal of Economic Entomology, 10, 392–397.Google Scholar
  17. Borer, E. T., Hosseini, P. R., Seabloom, E. W., & Dobson, A. P. (2007). Pathogen-induced reversal of native dominance in a grassland community. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5473–5478.PubMedCentralPubMedGoogle Scholar
  18. Bos, L. (1981). Wild plants in the ecology of virus diseases. In K. Maramorosch & K. F. Harris (Eds.), Plant diseases and vectors: ecology and epidemiology (pp. 1–33). New York: Academic.Google Scholar
  19. Bosque-Pérez, N. A., & Eigenbrode, S. D. (2011). The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems. Virus Research, 159(2), 201–205.PubMedGoogle Scholar
  20. Burdon, J. J. (1987). Diseases and plant population ecology. Cambridge: Cambridge University Press.Google Scholar
  21. Burdon, J. J., & Thrall, P. H. (2008). Pathogen evolution across the agro-ecological interface: implications for disease management. Evolutionary Applications, 1(1), 57–65.PubMedCentralGoogle Scholar
  22. Carter, W. (1961). Ecological aspects of plant virus transmissions. Annual Review of Entomology, 6, 347.PubMedGoogle Scholar
  23. Christiansen-Weniger, P., Powell, C., & Hardie, J. (1998). Plant virus and parasitoid interactions in a shared insect vector/host. Entomologia Experimentalis et Applicata, 86(2), 205–213.Google Scholar
  24. Cobb, R. C., Meentemeyer, R. K., & Rizzo, D. M. (2010). Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility. Ecology, 91(2), 327–333.PubMedGoogle Scholar
  25. Coley, P. D., Bryant, J. P., & Chapin, F. S. (1985). Resource availability and plant antiherbivore defense. Science, 230(4728), 895–899.PubMedGoogle Scholar
  26. Cooper, I., & Jones, R. A. C. (2006). Wild plants and viruses: under-investigated ecosystems. In J. M. Thresh (Ed.), Plant virus epidemiology (Vol. 67, pp. 1–47). Advances in Virus Research.Google Scholar
  27. Cooper, I., Kuhne, T., & Polishchuk, V. P. (2006). Virus diseases and crop biosecurity. Amsterdam: Ios Press.Google Scholar
  28. Cox, C. M., Bockus, W. W., Holt, R. D., Fang, L., & Garrett, K. A. (2013). Spatial connectedness of plant species: potential links for apparent competition via plant diseases. Plant Pathology, 62(6), 1195–1204.Google Scholar
  29. Crone, E. E. (2001). Is survivorship a better fitness surrogate than fecundity? Evolution, 55(12), 2611–2614.PubMedGoogle Scholar
  30. Cronin, J. P., Welsh, M. E., Dekkers, M. G., Abercrombie, S. T., & Mitchell, C. E. (2010). Host physiological phenotype explains pathogen reservoir potential. Ecology Letters, 13(10), 1221–1232.PubMedGoogle Scholar
  31. Culver, J. N., & Padmanabhan, M. S. (2007). Virus-induced disease: altering host physiology one interaction at a time. Annual Review of Phytopathology, 45, 221–243.PubMedGoogle Scholar
  32. Dáder, B., Moreno, A., Viñuela, E., & Fereres, A. (2012). Spatio-temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission. Viruses-Basel, 4(11), 3069–3089.Google Scholar
  33. Davis, R., Wang, H., Falk, B. W., & Nunez, J. (1998). Curly top virus found in perennial shrubs in foothills. California Agriculture, 52, 38–40.Google Scholar
  34. De Bruyn, A., Villemot, J., Lefeuvre, P., Villar, E., Hoareau, M., Harimalala, M., et al. (2012). East African cassava mosaic-like viruses from Africa to Indian ocean islands: molecular diversity, evolutionary history and geographical dissemination of a bipartite begomovirus. BMC Evolutionary Biology, 12.Google Scholar
  35. Doolittle, S. P., & Walker, M. N. (1925). Further studies on the overwintering and dissemination of cucurbit mosaic. Journal of Agricultural Research, 31, 0001–0058.Google Scholar
  36. Duffus, J. E. (1971). Role of weeds in incidence of virus diseases. Annual Review of Phytopathology, 9, 319.Google Scholar
  37. Dunn, A. M., Torchin, M. E., Hatcher, M. J., Kotanen, P. M., Blumenthal, D. M., Byers, J. E., et al. (2012). Indirect effects of parasites in invasions. Functional Ecology, 26(6), 1262–1274.Google Scholar
  38. Ellis, E. C., Goldewijk, K. K., Siebert, S., Lightman, D., & Ramankutty, N. (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19(5), 589–606.Google Scholar
  39. Ellis, E. C., & Ramankutty, N. (2008). Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6(8), 439–447.Google Scholar
  40. Ellstrand, N. C. (2003). Dangerous liaisons? When cultivated plants mate with their wild relatives. Baltimore: The John Hopkins University Press.Google Scholar
  41. Fabre, F., Rousseau, E., Mailleret, L., & Moury, B. (2012). Durable strategies to deploy plant resistance in agricultural landscapes. New Phytologist, 193, 1064–1075.PubMedGoogle Scholar
  42. Fargette, D., Konate, G., Fauquet, C., Muller, E., Peterschmitt, M., & Thresh, J. M. (2006). Molecular ecology and emergence of tropical plant viruses. Annual Review of Phytopathology, 44, 235–260.PubMedGoogle Scholar
  43. Fereres, A., & Moreno, A. (2009). Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Research, 141(2), 158–168.PubMedGoogle Scholar
  44. Fraile, A., & Garcia-Arenal, F. (2010). The coevolution of plants and viruses: resistance and pathogenicity. In J. P. Carr & G. Loebenstein (Eds.), Natural and engineered resistance to plant viruses, Pt Ii (Vol. 76, pp. 1–32). Advances in Virus Research.Google Scholar
  45. Friess, N., & Maillet, J. (1997). Influence of cucumber mosaic virus infection on the competitive ability and reproduction of chickweed (Stellaria media). New Phytologist, 135(4), 667–674.Google Scholar
  46. Froissart, R., Doumayrou, J., Vuillaume, F., Alizon, S., & Michalakis, Y. (2010). The virulence-transmission trade-off in vector-borne plant viruses: a review of (non-)existing studies. Philosophical Transactions of the Royal Society B-Biological Sciences, 365(1548), 1907–1918.PubMedCentralGoogle Scholar
  47. Gallitelli, D. (2000). The ecology of Cucumber mosaic virus and sustainable agriculture. Virus Research, 71(1–2), 9–21.PubMedGoogle Scholar
  48. García, M. B., & Ehrlén, J. (2002). Reproductive effort and herbivory timing in a perennial herb: fitness components at the individual and population levels. American Journal of Botany, 89(8), 1295–1302.PubMedGoogle Scholar
  49. Garrett, K. A. (2012). Information networks for disease: commonalities in human management networks and within-host signalling networks. European Journal of Plant Pathology, 133(1), 75–88.Google Scholar
  50. Ghawana, S., Kumar, H., Kumar, A., Singh, H., Bhardwaj, P., Rani, A., et al. (2011). An RNA isolation system for plant tissues rich in secondary metabolites. BMC Research Notes, 4, 85.PubMedCentralPubMedGoogle Scholar
  51. Gibbs, A. (1980). Plant virus that partially protects its wild legume host against herbivores. Intervirology, 13(1), 42–47.PubMedGoogle Scholar
  52. Gibbs, A. J., Fargette, D., Garcia-Arenal, F., & Gibbs, M. J. (2010). Time - the emerging dimension of plant virus studies. Journal of General Virology, 91, 13–22.PubMedGoogle Scholar
  53. Gilbert, G. S. (2002). Evolutionary ecology of plant diseases in natural ecosystems. Annual Review of Phytopathology, 40, 13–43.PubMedGoogle Scholar
  54. Gilligan, C. A., & van den Bosch, F. (2008). Epidemiological models for invasion and persistence of pathogens. Annual Review of Phytopathology, 46, 385–418.PubMedGoogle Scholar
  55. Hagen, C., Frizzi, A., Gabriels, S., Huang, M. Y., Salati, R., Gabor, B., et al. (2012). Accurate and sensitive diagnosis of geminiviruses through enrichment, high-throughput sequencing and automated sequence identification. Archives of Virology, 157(5), 907–915.PubMedGoogle Scholar
  56. Hagler, J. R., & Jackson, C. G. (2001). Methods for marking insects: current techniques and future prospects. Annual Review of Entomology, 46, 511–543.PubMedGoogle Scholar
  57. Hagler, J. R., & Jones, V. P. (2010). A protein-based approach to mark arthropods for mark-capture type research. Entomologia Experimentalis et Applicata, 135(2), 177–192.Google Scholar
  58. Herms, D. A., & Mattson, W. J. (1992). The dilemma of plants - to grow or defend. Quarterly Review of Biology, 67(3), 283–335.Google Scholar
  59. Hodge, S., Hardie, J., & Powell, G. (2011). Parasitoids aid dispersal of a nonpersistently transmitted plant virus by disturbing the aphid vector. Agricultural and Forest Entomology, 13(1), 83–88.Google Scholar
  60. Hogenhout, S. A., Ammar, E. D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327–359.PubMedGoogle Scholar
  61. Ingwell, L. L., Eigenbrode, S. D., & Bosque-Pérez, N. A. (2012). Plant viruses alter insect behavior to enhance their spread. Scientific Reports, 2.Google Scholar
  62. Jeger, M. J., Pautasso, M., Holdenrieder, O., & Shaw, M. W. (2007). Modelling disease spread and control in networks: implications for plant sciences. New Phytologist, 174(2), 279–297.PubMedGoogle Scholar
  63. Jeger, M. J., van den Bosch, & Madden, L. V. (2011). Modelling virus-and host-limitation in vectored plant disease epidemics. Virus Research, 159, 215–222.PubMedGoogle Scholar
  64. Jenner, C. E., Wang, X. W., Ponz, F., & Walsh, J. A. (2002). A fitness cost for turnip mosaic virus to overcome host resistance. Virus Research, 86(1–2), 1–6.PubMedGoogle Scholar
  65. Jiménez-Martinez, E. S., Bosque-Pérez, N. A., Berger, P. H., Zemetra, R., Ding, H. J., & Eigenbrode, S. D. (2004a). Volatile cues influence the response of Rhopalosiphum padi (Homoptera : Aphididae) to barley yellow dwarf virus-infected transgenic and untransformed wheat. Environmental Entomology, 33(5), 1207–1216.Google Scholar
  66. Jiménez-Martinez, E. S., Bosque-Pérez, N. A., Berger, P. H., & Zemetra, R. S. (2004b). Life history of the bird cherry-oat aphid, Rhopalosiphum padi (Homoptera : Aphididae), on Transgenic and untransformed wheat challenged with Barley yellow dwarf virus. Journal of Economic Entomology, 97(2), 203–212.PubMedGoogle Scholar
  67. Jones, R. A. C. (2004). Using epidemiological information to develop effective integrated virus disease management strategies. Virus Research, 100, 5–30.PubMedGoogle Scholar
  68. Jones, R. A. C. (2005). Patterns of spread of two non-persistently aphid-borne viruses in lupin stands under four different infection scenarios. Annals of Applied Biology, 146(3), 337–350.Google Scholar
  69. Jones, R. A. C. (2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141(2), 113–130.PubMedGoogle Scholar
  70. Jones, R. A. C., Salam, M. U., Maling, T. J., Diggle, A. J., & Thackray, D. J. (2010). Principles of predicting plant virus disease epidemics. Annual Review of Phytopathology, 48(48), 179–203.PubMedGoogle Scholar
  71. Kareiva, P., Watts, S., McDonald, R., & Boucher, T. (2007). Domesticated nature: shaping landscapes and ecosystems for human welfare. Science, 316(5833), 1866–1869.PubMedGoogle Scholar
  72. Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., et al. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468(7324), 647–652.PubMedGoogle Scholar
  73. Kelley, S. E. (1994). Viral pathogens and the advantage of sex in the perennial grass Anthoxanthum odoratum. Philosophical Transactions of the Royal Society of London B Biological Sciences, 346(1317), 295–302.Google Scholar
  74. Klueken, A. M., Hau, B., Koepke, I., & Poehling, H. M. (2008). Comparison of techniques to survey populations of cereal aphids (Homoptera: Aphididae) in winter cereals during autumn and spring with special consideration of sample size. Journal of Plant Diseases and Protection, 115(6), 279–287.Google Scholar
  75. Kreuze, J. F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I., et al. (2009). Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology, 388(1), 1–7.PubMedGoogle Scholar
  76. Kumar, P. L., Hanna, R., Alabi, O. J., Soko, M. M., Oben, T. T., Vangu, G. H. P., et al. (2011). Banana bunchy top virus in sub-Saharan Africa: investigations on virus distribution and diversity. Virus Research, 159(2), 171–182.PubMedGoogle Scholar
  77. Lebouvier, M., Laparie, M., Hullé, M., Marais, A., Cozic, Y., Lalouette, L., et al. (2011). The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biological Invasions, 13(5), 1195–1208.Google Scholar
  78. Legg, J. P., Jeremiah, S. C., Obiero, H. M., Maruthi, M. N., Ndyetabula, I., Okao-Okuja, G., et al. (2011). Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research, 159(2), 161–170.PubMedGoogle Scholar
  79. Li, R. G., Gao, S., Hernandez, A. G., Wechter, W. P., Fei, Z. J., & Ling, K. S. (2012). Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. Plos One, 7(5).Google Scholar
  80. Lima, A. T. M., Sobrinho, R. R., Gonzalez-Aguilera, J., Rocha, C. S., Silva, S. J. C., Xavier, C. A. D., et al. (2013). Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. Journal of General Virology, 94, 418–431.PubMedGoogle Scholar
  81. MacClement, W. D., & Richards, M. G. (1956). Viruses in wild plants. American Journal of Botany, 34, 793–799.Google Scholar
  82. Madden, L. V., Jeger, M. J., & van den Bosch, F. (2000). A theoretical assessment of the effects of vector-virus transmission mechanism on plant virus disease epidemics. Phytopathology, 90(6), 576–594.PubMedGoogle Scholar
  83. Malmstrom, C. M., & Field, C. B. (1997). Virus-induced differences in the response of oat plants to elevated carbon dioxide. Plant Cell and Environment, 20(2), 178–188.Google Scholar
  84. Malmstrom, C. M., Hughes, C. C., Newton, L. A., & Stoner, C. J. (2005a). Virus infection in remnant native bunchgrasses from invaded California grasslands. New Phytologist, 168(1), 217–230.PubMedGoogle Scholar
  85. Malmstrom, C. M., McCullough, A. J., Johnson, H. A., Newton, L. A., & Borer, E. T. (2005b). Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia, 145(1), 153–164.PubMedGoogle Scholar
  86. Malmstrom, C. M., Melcher, U., & Bosque-Pérez, N. A. (2011). The expanding field of plant virus ecology: historical foundations, knowledge gaps, and research directions. Virus Research, 159(2), 84–94.PubMedGoogle Scholar
  87. Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A., & Cook, M. A. (2007). Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. Journal of Ecology, 95, 1153–1166.Google Scholar
  88. Malmstrom, C. M., Stoner, C. J., Brandenburg, S., & Newton, L. A. (2006). Virus infection and grazing exert counteracting influences on survivorship of native bunchgrass seedlings competing with invasive exotics. Journal of Ecology, 94(2), 264–275.PubMedCentralPubMedGoogle Scholar
  89. Márquez, L. M., Redman, R. S., Rodriguez, R. J., & Roossinck, M. J. (2007). A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science, 315, 513–515.PubMedGoogle Scholar
  90. Maskell, L. C., Raybould, A. F., Cooper, J. I., Edwards, M. L., & Gray, A. J. (1999). Effects of turnip mosaic virus and turnip yellow mosaic virus on the survival, growth and reproduction of wild cabbage (Brassica oleracea). Annals of Applied Biology, 135(1), 401–407.Google Scholar
  91. Mauck, K., Bosque-Perez, N. A., Eigenbrode, S. D., De Moraes, C. M., & Mescher, M. C. (2012). Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Functional Ecology, 26(5), 1162–1175.Google Scholar
  92. Mauck, K. E., De Moraes, C. M., & Mescher, M. C. (2010). Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3600–3605.PubMedCentralPubMedGoogle Scholar
  93. McElhany, P., Real, L. A., & Power, A. G. (1995). Vector preference and disease dynamics—a study of barley yellow dwarf virus. Ecology, 76(2), 444–457.Google Scholar
  94. McGraw, J. B., & Caswell, H. (1996). Estimation of individual fitness from life-history data. American Naturalist, 147(1), 47–64.Google Scholar
  95. Meentemeyer, R. K., Haas, S. E., & Václavík, T. (2012). Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annual Review of Phytopathology, 50, 379–402.PubMedGoogle Scholar
  96. Melcher, U., & Grover, V. (2011). Genomic approaches to discovery of viral species diversity of non-cultivated plants. In C. Caranta & M. A. Aranda (Eds.), Recent advances in plant virology. Norfolk: Caister Academic Press.Google Scholar
  97. Melcher, U., Muthukumar, V., Wiley, G. B., Min, B. E., Palmer, M. W., Verchot-Lubicz, J., et al. (2008). Evidence for novel viruses by analysis of nucleic acids in virus-like particle fractions from Ambrosia psilostachya. Journal of Virological Methods, 152(1–2), 49–55.PubMedGoogle Scholar
  98. Mitchell, C. E., & Power, A. G. (2006). Disease dynamics in plant communities. In S. K. Collinge & C. Ray (Eds.), Disease ecology: community structure and pathogen dynamics (pp. 58–72). Oxford: Oxford University Press.Google Scholar
  99. Moreno-Delafuente, A., Garzo, E., Moreno, A., & Fereres, A. (2013). A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. Plos One, 8(4).Google Scholar
  100. Moritz, G., Kumm, S., & Mound, L. (2004). Tospovirus transmission depends on thrips ontogeny. Virus Research, 100(1), 143–149.PubMedGoogle Scholar
  101. Moslonka-Lefebvre, M., Finley, A., Dorigatti, I., Dehnen-Schmutz, K., Harwood, T., Jeger, M. J., et al. (2011). Networks in plant epidemiology: from genes to landscapes, countries, and continents. Phytopathology, 101(4), 392–403.PubMedGoogle Scholar
  102. Moury, B., Fabre, F., & Senoussi, R. (2007). Estimation of the number of virus particles transmitted by an insect vector. Proceedings of the National Academy of Sciences of the United States of America, 104(45), 17891–17896.PubMedCentralPubMedGoogle Scholar
  103. Nathan, R., Perry, G., Cronin, J. T., Strand, A. E., & Cain, M. L. (2003). Methods for estimating long-distance dispersal. Oikos, 103(2), 261–273.Google Scholar
  104. Navas-Castillo, J., Fiallo-Olivé, E., & Sánchez-Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49(49), 219–248.PubMedGoogle Scholar
  105. Ng, J. C. K., & Falk, B. W. (2006). Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annual Review of Phytopathology, 44, 183–212.PubMedGoogle Scholar
  106. Ng, T. F. F., Duffy, S., Polston, J. E., Bixby, E., Vallad, G. E., & Breitbart, M. (2011). Exploring the diversity of plant DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. Plos One, 6(4).Google Scholar
  107. Nguyen, H. D., Tomitaka, Y., Ho, S. Y. W., Duchêne, S., Vetten, H. J., Lesemann, D., et al. (2013). Turnip mosaic potyvirus probably first spread to Eurasian Brassica crops from wild orchids about 1000 years ago. Plos One, 8(2).Google Scholar
  108. Orr, H. A. (2009). Fitness and its role in evolutionary genetics. Nature Reviews Genetics, 10(8), 531–539.PubMedCentralPubMedGoogle Scholar
  109. Osmond, C. B., Berry, J. A., Balachandran, S., Buchenosmond, C., Daley, P. F., & Hodgson, R. A. J. (1990). Potential consequences of virus infection for shade-sun acclimmation in leaves. Botanica Acta, 103(3), 226–229.Google Scholar
  110. OtimNape, G. W., Thresh, J. M., & Shaw, M. W. (1997). The effects of cassava mosaic virus disease on yield and compensation in mixed stands of healthy and infected cassava. Annals of Applied Biology, 130(3), 503–521.Google Scholar
  111. Pagán, I., Fraile, A., Fernandez-Fueyo, E., Montes, N., Alonso-Blanco, C., & García-Arenal, F. (2010). Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philosophical Transactions of the Royal Society B-Biological Sciences, 365(1548), 1983–1995.PubMedCentralGoogle Scholar
  112. Pagán, I., Gonzalez-Jara, P., Moreno-Letelier, A., Rodelo-Urrego, M., Fraile, A., Pinero, D., et al. (2012). Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system. PLoS Pathogens, 8(7).Google Scholar
  113. Pagán, I., & Holmes, E. C. (2010). Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. Journal of Virology, 84(12), 6177–6187.PubMedCentralPubMedGoogle Scholar
  114. Pallett, D. W., Ho, T., Cooper, I., & Wang, H. (2010). Detection of cereal yellow dwarf virus using small interfering RNAs and enhanced infection rate with cocksfoot streak virus in wild cocksfoot grass (Dactylis glomerata). Journal of Virological Methods, 168(1–2), 223–227.PubMedGoogle Scholar
  115. Plantegenest, M., Le May, C., & Fabre, F. (2007). Landscape epidemiology of plant diseases. Journal of the Royal Society Interface, 4(16), 963–972.PubMedCentralGoogle Scholar
  116. Power, A. G. (1996). Competition between viruses in a complex plant-pathogen. Ecology, 77(4), 1004–1010.Google Scholar
  117. Power, A. G. (2008). Community ecology of plant viruses. In M. J. Roossinck (Ed.), Plant virus evolution. Berlin Heidelberg: Springer.Google Scholar
  118. Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society B-Biological Sciences, 365(1554), 2959–2971.PubMedCentralGoogle Scholar
  119. Power, A. G., Borer, E. T., Hosseini, P., Mitchell, C. E., & Seabloom, E. W. (2011). The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands. Virus Research, 159(2), 95–100.PubMedGoogle Scholar
  120. Power, A. G., & Mitchell, C. E. (2004). Pathogen spillover in disease epidemics. American Naturalist, 164(5), S79–S89.PubMedGoogle Scholar
  121. Predajňa, L., Šubr, Z., Candresse, T., & Glasa, M. (2012). Evaluation of the genetic diversity of Plum pox virus in a single plum tree. Virus Research, 167(1), 112–117.PubMedGoogle Scholar
  122. Prendeville, H. R., Ye, X. H., Morris, T. J., & Pilson, D. (2012). Virus infections in wild plant populations are both frequent and often unapparent. American Journal of Botany, 99(6), 1033–1042.PubMedGoogle Scholar
  123. Rakotomalala, M., Pinel-Galzi, A., Mpunami, A., Randrianasolo, A., Ramavovololona, P., Rabenantoandro, Y., et al. (2013). Rice yellow mottle virus in Madagascar and in the Zanzibar Archipelago; island systems and evolutionary time scale to study virus emergence. Virus Research, 171(1), 71–79.PubMedGoogle Scholar
  124. Remold, S. K. (2002). Unapparent virus infection and host fitness in three weedy grass species. Journal of Ecology, 90(6), 967–977.Google Scholar
  125. Robertson, N. L. (2007). Identification and characterization of a new virus in the genus Potyvirus from wild populations of Angelica lucida L. and A-genuflexa Nutt., family Apiaceae. Archives of Virology, 152(9), 1603–1611Google Scholar
  126. Robertson, N. L., Côté, F., Pare, C., Leblanc, E., Bergeron, M. G., & Leclerc, D. (2007). Complete nucleotide sequence of Nootka lupine vein-clearing virus. Virus Genes, 35(3), 807–814.PubMedGoogle Scholar
  127. Rodelo-Urrego, M., Pagán, I., González-Jara, P., Betancourt, M., Moreno-Letelier, A., Ayllón, M. A., et al. (2013). Landscape heterogeneity shapes host-parasite interactions and results in apparent plantvirus codivergence. Molecular Ecology, 22(8), 2325–2340.PubMedGoogle Scholar
  128. Roossinck, M. J. (2010). Lifestyles of plant viruses. Philosophical Transactions of the Royal Society B-Biological Sciences, 365(1548), 1899–1905.PubMedCentralGoogle Scholar
  129. Roossinck, M. J. (2011). The good viruses: viral mutualistic symbioses. Nature Reviews Microbiology, 9(2), 99–108.PubMedGoogle Scholar
  130. Roossinck, M. J. (2012). Plant virus metagenomics: biodiversity and ecology. Annual Review of Genetics, 46, 359–369.PubMedGoogle Scholar
  131. Roossinck, M. J., Saha, P., Wiley, G. B., Quan, J., White, J. D., Lai, H., et al. (2010). Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Molecular Ecology, 19, 81–88.PubMedGoogle Scholar
  132. Rotenberg, D., Krishna Kumar, N. K., Ullman, D. E., Montero-Astúa, M., Willis, D. K., German, T. L., et al. (2009). Variation in tomato spotted wilt virus titer in Frankliniella occidentalis and its association with frequency of transmission. Phytopathology, 99(4), 404–410.PubMedGoogle Scholar
  133. Rua, M. A., Pollina, E. C., Power, A. G., & Mitchell, C. E. (2011). The role of viruses in biological invasions: friend or foe? Current Opinion in Virology, 1(1), 68–72.PubMedGoogle Scholar
  134. Ruščić, J., Gutiérrez-Aguirre, I., Urbas, L., Kramberger, P., Mehle, N., Škorić, D., et al. (2013). A novel application of methacrylate based short monolithic columns: concentrating Potato spindle tuber viroid from water samples. Journal of Chromatography A, 1274, 129–136.PubMedGoogle Scholar
  135. Sasu, M. A., Ferrari, M. J., Du, D. L., Winsor, J. A., & Stephenson, A. G. (2009). Indirect costs of a nontarget pathogen mitigate the direct benefits of a virus-resistant transgene in wild Cucurbita. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19067–19071.PubMedCentralPubMedGoogle Scholar
  136. Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., et al. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938–954.PubMedGoogle Scholar
  137. Schrotenboer, A. C., Allen, M. S., & Malmstrom, C. M. (2011). Modification of native grasses for biofuel production may increase virus susceptibility. Global Change Biology Bioenergy, 3(5), 360–374.Google Scholar
  138. Seabloom, E. W., Borer, E. T., Lacroix, C., Mitchell, C. E., & Power, A. G. (2013). Richness and composition of niche-assembled viral pathogen communities. Plos One, 8(2).Google Scholar
  139. Seabloom, E. W., Hosseini, P. R., Power, A. G., & Borer, E. T. (2009). Diversity and composition of viral communities: coinfection of barley and Cereal yellow dwarf viruses in California grasslands. American Naturalist, 173(3), E79–E98.PubMedGoogle Scholar
  140. Shapiro, L., De Moraes, C. M., Stephenson, A. G., & Mescher, M. C. (2012). Pathogen effects on vegetative and floral odours mediate vector attraction and host exposure in a complex pathosystem. Ecology Letters, 15(12), 1430–1438.PubMedGoogle Scholar
  141. Shaw, R. G., & Geyer, C. J. (2010). Inferring fitness landscapes. Evolution, 64(9), 2510–2520.PubMedGoogle Scholar
  142. Sisterson, M. S. (2008). Effects of insect-vector preference for healthy or infected plants on pathogen spread: Insights from a model. Journal of Economic Entomology, 101(1), 1–8.PubMedGoogle Scholar
  143. Srininvasan, R., Alvarez, J. M., Eigenbrode, S. D., & Bosque-Perez, N. A. (2006). Influence of hairy nightshade Solanum sarrachoides (Sendtner) and Potato leafroll virus (Luteoviridae : Polerovirus) on the host preference of Myzus persicae (Sulzer) (Homoptera : Aphididae). Environmental Entomology, 35(2), 546–553.Google Scholar
  144. Stafford, C. A., Walker, G. P., & Ullman, D. E. (2011). Infection with a plant virus modifies vector feeding behavior. Proceedings of the National Academy of Sciences of the United States of America, 108(23), 9350–9355.PubMedCentralPubMedGoogle Scholar
  145. Stumpf, C. F., & Kennedy, G. G. (2007). Effects of tomato spotted wilt virus isolates, host plants, and temperature on survival, size, and development time of Frankliniella occidentalis. Entomologia Experimentalis et Applicata, 123(2), 139–147.Google Scholar
  146. Sutrave, S., Scoglio, C., Isard, S. A., Hutchinson, J. M. S., & Garrett, K. A. (2012). Identifying highly connected counties compensates for resource limitations when evaluating national spread of an invasive pathogen. Plos One, 7(6).Google Scholar
  147. Syller, J. (2012). Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 13(2), 204–216.PubMedGoogle Scholar
  148. Thresh, J. M. (Ed.). (1981). Pests, pathogens, and vegetation. London: Pitman Books Limited.Google Scholar
  149. Thresh, J. M. (2006). Plant virus epidemiology: the concept of host genetic vulnerability. In J. M. Thresh (Ed.), Plant virus epidemiology (Vol. 67, pp. 89–125). Advances in Virus Research.Google Scholar
  150. Todesco, M., Balasubramanian, S., Hu, T. T., Traw, M. B., Horton, M., Epple, P., et al. (2010). Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature, 465(7298), 632–U129.PubMedCentralPubMedGoogle Scholar
  151. Tomlinson, J. A., & Carter, A. L. (1970). Studies on seed transmission of cucumber mosaic virus in chickwee (Stellaria media) in relation to the ecology of the virus. Annals of Applied Biology, 66(3), 381.Google Scholar
  152. Turechek, W. W., Kousik, C. S., & Adkins, S. (2010). Distribution of four viruses in single and mixed infections within infected watermelon plants in Florida. Phytopathology, 100(11), 1194–1203.PubMedGoogle Scholar
  153. Varsani, A., Shepherd, D. N., Monjane, A. L., Owor, B. E., Erdmann, J. B., Rybicki, E. P., et al. (2008). Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. Journal of General Virology, 89, 2063–2074.PubMedGoogle Scholar
  154. Wang, M. B., Masuta, C., Smith, N. A., & Shimura, H. (2012). RNA silencing and plant viral diseases. Molecular Plant-Microbe Interactions, 25(10), 1275–1285.PubMedGoogle Scholar
  155. Webster, C. G., Coutts, B. A., Jones, R. A. C., Jones, M. G. K., & Wylie, S. J. (2007). Virus impact at the interface of an ancient ecosystem and a recent agroecosystem: studies on three legume-infecting potyviruses in the southwest Australian floristic region. Plant Pathology, 56(5), 729–742.Google Scholar
  156. Whitfield, A. E., Campbell, L. R., Sherwood, J. L., & Ullman, D. E. (2003). Tissue blot immunoassay for detection of Tomato spotted wilt virus in Ranunculus asiaticus and other ornamentals. Plant Disease, 87(6), 618–622.Google Scholar
  157. Willner, D., & Hugenholtz, P. (2013). From deep sequencing to viral tagging: recent advances in viral metagenomics. Bioessays, 35(5), 436–442.PubMedGoogle Scholar
  158. Wintermantel, W. M., Cortez, A. A., Anchieta, A. G., Gulati-Sakhuja, A., & Hladky, L. L. (2008). Co-infection by two Criniviruses alters accumulation of each virus in a host-specific manner and influences efficiency of virus Transmission. Phytopathology, 98(12), 1340–1345.PubMedGoogle Scholar
  159. Wisler, G. C., & Norris, R. E. (2005). Interactions between weeds and cultivated plants as related to management of plant pathogens. Weed Science, 53(6), 914–917.Google Scholar
  160. Wren, J. D., Roossinck, M. J., Nelson, R. S., Scheets, K., Palmer, M. W., & Melcher, U. (2006). Plant virus biodiversity and ecology. PLoS Biology, 4(3), 314–315.Google Scholar
  161. Wu, B. L., Blanchard-Letort, A., Liu, Y., Zhou, G. H., Wang, X. F., & Elena, S. F. (2011). Dynamics of molecular evolution and phylogeography of Barley yellow dwarf virus-PAV. Plos One, 6(2).Google Scholar
  162. Wylie, S. J., Li, H., Dixon, K. W., Richards, H., & Jones, M. G. K. (2013). Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (Diuris species) in Australia. Virus Research, 171(1), 22–32.PubMedGoogle Scholar
  163. Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180(4), 911–921.PubMedGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • H. M. Alexander
    • 1
    Email author
  • K. E. Mauck
    • 2
  • A. E. Whitfield
    • 3
  • K. A. Garrett
    • 3
  • C. M. Malmstrom
    • 4
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceUSA
  2. 2.Department of EntomologyThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Plant PathologyKansas State UniversityManhattanUSA
  4. 4.Department of Plant BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations