Skip to main content
Log in

Biochemical and histochemical traits: a promising way to screen resistance against spot blotch (Bipolaris sorokiniana) of wheat

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Spot blotch caused by Bipolaris sorokiniana is a serious disease of wheat in warmer and humid regions of the world. Three blighting components, area under disease progress curve (AUDPC), disease severity (DS) and lesion size along with four biochemical and histochemical factors viz., total phenol content (TPC), chlorophyll content (CHC), phenylalanine ammonia-lyase (PAL) activity and lignin deposition were studied in a recombinant inbred lines (RILs) population involving parents “Sonalika” (susceptible) and “Yangmai 6” (resistant). The objective was to identify one or more robust and reliable tools of resistance, physical, biochemical or histochemical, to facilitate selection against spot blotch. The DS, AUDPC and lesion size were higher in the susceptible parent and RILs compared to the resistant. The mean TPC (246 mg Gallic acid g−1 fresh weight) of the most resistant RIL was significantly higher than the most susceptible (181.5 mg Gallic acid g−1 fresh weight) at 48 h after inoculation (hai). The mean SPAD value for CHC varied between 48.8 in the most resistant RILs to 8.8 in the most susceptible, while the mean PAL varied between 928.4 and 96.0 μmoles Cinnamic acid mg-1 fresh weight at 48 hai in resistant and susceptible RILs, respectively. Likewise, lignin deposition was significantly higher in resistant RILs compared to the susceptible. The biochemical and histochemical parameters were significantly correlated with resistance and appeared robust for facilitating screening of breeding material and for increased precision in phenotyping against spot blotch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aist, J. R. (1983). Structural responses as resistance mechanisms. In J. A. Bailey & B. J. Deverall (Eds.), The dynamics of host defence (pp. 33–70). Sydney: Academic.

    Google Scholar 

  • Angra, R. S., & Sharma, D. K. (1994). Biochemical and histological studies on susceptible and resistant maize leaves infected by Helminthosporium maydis. Plant Pathology, 43, 972–978.

    Article  Google Scholar 

  • Bashyal, B. M., Chand, R., Prasad, L. C., & Joshi, A. K. (2011). Partial resistance components for the management of spot blotch pathogen Bipolaris sorokiniana of barley (Hordeum vulgare L.). Acta Phytopathologicaet Entomologica Hungarica, 46, 49–57.

    Article  Google Scholar 

  • Bazzalo, M. E., Heber, E., de Del Pero, M. A., & Caso, O. H. (1985). Phenolic compounds in stems of sunflower plants inoculated with Sclerotinia sclerotiorum and their inhibitory effects on the fungus. Phytopathology, 112, 322–332.

    Article  CAS  Google Scholar 

  • Bazzalo, M. E., Dimarco, P., Martinez, F., & Daleo, G. R. (1991). Indicators of resistance of sunflower plant to basal rot (Sclerotinia sclerotiomm): Symptomatological, biochemical, anatomical, and morphological characters of the host. Euphytica, 57, 195–205.

    Article  Google Scholar 

  • Beardmore, J., Ride, J. P., & Granger, J. W. (1983). Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust. Physiological Plant Pathology, 19, 289–299.

    Google Scholar 

  • Bell, A. A. (1981). Biochemical mechanisms of disease resistance. Annual Review of Plant Physiology, 32, 2–81.

    Article  Google Scholar 

  • Boyd, L. A., Smith, P. H., Green, R. M., & Brown, J. K. M. (1994). The relationship between the expression of defense-related genes and mildew development in barley. Molecular Plant-Microbe Interactions, 7, 401–410.

    Article  CAS  Google Scholar 

  • Broers, L. H. M. (1989). Partial resistance to wheat leaf rust in 18 spring wheat cultivars. Euphytica, 44, 247–258.

    Article  Google Scholar 

  • Bull, J., Mauch, F., Hertig, C., Rebmann, G., & Dudler, R. (1992). Sequence and expression of a wheat gene that encodes a novel protein associated with pathogen defense. Molecular Plant-Microbe Interactions, 5, 516–519.

    Article  PubMed  CAS  Google Scholar 

  • Burrell, M. M., & Rees, T. A. (1974). Metabolism of Phenyalanine and tyrosine by rice leaves infected by Pyricularia oryzae. Physiological Plant Pathology, 4, 497–500.

    Article  CAS  Google Scholar 

  • Chaurasia, S., Chand, R., & Joshi, A. K. (2000). Relative dominance of Alternaria triticina Pras. et Prab. and Bipolaris sorokininana (Sacc.) Shoemaker, in different growth stages of wheat (T. aestivum L.). Journal of Plant Disease & Protection, 107, 176–181.

    Google Scholar 

  • Chérif, M., Benhamou, N., & Bélangeret, R. R. (1991). Ultrastructural and cytochemical studies of fungal development and host reactions in cucumber plants infected by Pythium ultimum. Physiological and Molecular Plant Pathology, 39, 353–375.

    Article  Google Scholar 

  • Das, S., Aggarwal, R., & Singh, D. V. (2003). Differential induction of defense related enzymes involved in lignin biosynthesis in wheat in response to spot blotch infection. Indian Phytopathology, 56, 129–133.

    CAS  Google Scholar 

  • De Ascensao, A. F. R. D. C., & Dubrey, I. A. (2003). Soluble and wall-bound phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubens. Phytochemistry, 63, 679–686.

    Article  PubMed  Google Scholar 

  • Dickerson, D. P., Pasholati, S. F., Hagerman, A. E., Butler, L. G., & Nicholson, R. L. (1984). Phenylalanine ammonia Lyase and Hydroxycinnamate CO-A lyase in maize mesocotyls inoculated with Helminthosporium maydis and H. carbonum. Physiological Plant Pathology, 25, 111–123.

    Article  CAS  Google Scholar 

  • Dubin, H. J., & van Ginkel, M. (1991). The status of the wheat diseases and disease research in warmer areas. In D. A. Saunders (Ed.), Wheat for the Nontraditional warmer Areas (pp. 125–145). Mexico: CIMMYT.

    Google Scholar 

  • Dubin, H. J., Arun, B., Begum, S. N., Bhatta, M., Dhari, R., Goel, L. B., Joshi, A. K., Khanna, B. M., Malaker, P. K., Pokhrel, D. R., Rahman, M. M., Saha, N. K., Shaheed, M. A., Sharma, R. C., Singh, A. K., Singh, R. M., Singh, R. V., Vargas, M., & Verma, P. C. (1998). Results of the South Asia regional Helminthosporium leaf blight and yield experiment, 1993–94. In E. Duveiller, H. J. Dubin, J. Reeves, & A. McNab (Eds.), Helminthosporium blights of wheat: spot blotch and tan spot (pp. 182–187). Mexico: CIMMYT.

    Google Scholar 

  • Duveiller, E., Dubin, H. J., Reeves, J., & McNab, A. (eds). (1998). Helminthosporium Blights of Wheat:Spot Blotch and Tan Spot. Proceedings of the Helminthosporium Blights of Wheat Workshop (376 pp). El Bata´n, Mexico, Mexico, DF: CIMMYT.

  • Duveiller, E., Kandel, Y. R., Sharma, R. C., & Shrestha, S. M. (2005). Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology, 95, 248–256.

    Article  PubMed  CAS  Google Scholar 

  • Gogoi, R., Singh, D. V., & Srivastava, K. D. (2001). Phenols as a biochemical basis of resistance in wheat against Kernel bunt. Plant Pathology, 50, 470–476.

    Article  CAS  Google Scholar 

  • Graichen, F. A. S., Martinelli, J. A., Wesp, C. d. L., Federizzi, L. C., & Chaves, M. S. (2011). Epidemiological and histological components of crown rust resistance in oat genotypes. European Journal of Plant Pathology, 13, 497–510.

    Article  Google Scholar 

  • Hammerschmidt, R., & Nicholson, R. L. (1977). Resistance of maize to anthracnose: changes in host phenols and pigments. Phytopathology, 67, 251–258.

    Article  CAS  Google Scholar 

  • Henderson, S. J., & Friend, J. (1979). Increase in PAL and lignin-like compounds as race-specific resistance responses of potato tubers to Phytophthora infestans. Journal of Phytopathology, 94, 323–334.

    Article  CAS  Google Scholar 

  • Hoch, H. C., & Staples, R. C. (1991). Signaling for infection structure formation in fungi. In G. T. Cole & H. C. Hoch (Eds.), Fungal spore and disease initiation in plants and animals (pp. 25–46). New York: Plenum.

    Chapter  Google Scholar 

  • Ibeagha, A. E., Huckelhoven, R., Schafer, P., Sigh, D. P., & Kogel, K.-H. (2005). Model wheat genotypes as tool to uncover effective defense mechanisms against the Hemibiotrophic fungus Bipolaris sorokiniana. Phytopathology, 9, 528–532.

    Article  Google Scholar 

  • Jabeen, N., Ahmed, N., Ghani, M. Y., & Sofi, P. A. (2009). Role of phenolic compounds in resistance to chilli wilt. Communications in Biometry and Crop Science, 4, 52–61.

    Google Scholar 

  • Jeger, M. J., & Viljanen-Rollinson, S. L. H. (2001). The use of area under disease progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics, 102, 32–40.

    Article  Google Scholar 

  • Jersh, S., Scherer, C., Huth, G., & Schlosser, E. (1989). Proanthocyanidins as basis for quiescence of Botrytis cinerea in immature strawberry. Journal of Plant Pathology, 22, 67–70.

    Google Scholar 

  • Joshi, A. K., & Chand, R. (2002). Variation and inheritance of leaf angle and its association with spot blotch (Bipolaris sorokiniana) severity in wheat (Triticum aestivum). Euphytica, 124, 283–291.

    Article  Google Scholar 

  • Joshi, A. K., Chand, R., & Arun, B. (2002). Relationship of plant height and days to maturity with resistance to spot blotch in wheat. Euphytica, 123, 221–228.

    Article  Google Scholar 

  • Joshi, A. K., Mishra, B., Chatrath, R., Ortiz-Ferrara, G., & Singh, R. P. (2007a). Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica, 157, 431–446.

    Article  Google Scholar 

  • Joshi, A. K., Kumari, M., Singh, V. P., Reddy, C. M., Kumar, S., Rane, J., & Chand, R. (2007b). Stay green trait: variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica, 153, 59–71.

    Article  Google Scholar 

  • Joshi, A. K., Kumar, S., Chand, R., & Ortiz-Ferrara, G. (2004). Inheritance of resistance to spot blotch caused by Bipolaris sorokiniana in spring wheat. Plant Breeding, 123, 213–219.

    Article  Google Scholar 

  • Kalappanavar, I. K., & Hiremath, R. V. (2000). Biochemical factors for multiple resistance to foliar disease of sorghum. Madras Agricultural Journal, 87, 66–70.

    Google Scholar 

  • Kofalvi, S. A., & Nassuth, A. (1995). Influence of wheat streak mosaic virus infection phenylpropanoid metabolism and the accumulation of phenolic and lignin in wheat. Physiological and Molecular Plant Pathology, 47, 365–377.

    Article  CAS  Google Scholar 

  • Kumar, U., Joshi, A. K., Kumar, S., Chand, R., & Röder, M. S. (2009). Mapping of resistance to spot blotch disease caused by Bipolaris sorokiniana in spring wheat. Theoretical and Applied Genetics, 118, 783–792.

    Article  PubMed  CAS  Google Scholar 

  • MacRae, W. D., & Towers, G. H. N. (1984). Biological activity of lignans. Phytochemistry, 23, 1207–1220.

    Article  CAS  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., Dangl, J. L., & Dietrich, R. A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26, 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Marcado, D., Renard, M. E., Maraite, H., & Duveiller, E. (2003). Chlorophyll content and chlorophyll fluorescence as indicators of resilience to temperature stress in wheat and its relationship with resistance to Bipolaris sorokiniana. In J. B. Rasmussen, T. L. Friesen, & S. Ali (Eds.), Proceedings of the International Wheat Tan Spot and Spot Blotch Workshop, 21–24 July 2002 (pp. 60–63). Bemidji: North Dakota State University.

    Google Scholar 

  • Matern, U., & Kneusel, R. E. (1988). Phenolic compounds in plant disease resistance. Phytoparastica, 16, 153–170.

    Article  CAS  Google Scholar 

  • Moerschbacher, B. M., Flott, B. E., Noll, U., & Reisener, H. J. (1989). On the specificity of an elicitor preparation from stem rust which induces lignification in wheat leaves. Plant Physiology and Biochemistry, 27, 305–314.

    CAS  Google Scholar 

  • Moerschbacher, B. M., Noll, U. M., Flott, B. E., & Reisener, H. J. (1988). Lignin biosynthetic enzymes in stem rust infected resistant and susceptible near isogenic wheat lines. Physiological and Molecular Plant Pathology, 33, 33–46.

    Article  CAS  Google Scholar 

  • Moerschbacher, B. M., Mierau, M., GraeBner, B., Noll, U., & Mort, A. J. (1999). Small oligomers of galacturonic acid are endogenous suppressors of disease resistance reactions in wheat leaves. Journal of Experimental Botany, 50, 605–612.

    Article  CAS  Google Scholar 

  • Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.

    Article  CAS  Google Scholar 

  • Niemann, G. J., van der Kerk, A., Niessen, M. A., & Versluis, K. (1991). Free and cell wall-bound phenolics and other constituents from uninoculated and fungus infected carnation (Dianthus caryophylIus L.) stems. Physiological and Molecular Plant Pathology, 38, 417–432.

    Article  CAS  Google Scholar 

  • Nyadanu, D., Akromah, R., Adomako, B., Kwoseh, C., Lowor, S. T., Dzahini-Obiatey, H., Akrofi, A. Y., Asiama, Y. O., & Assuah, A. H. (2013). Biochemical mechanisms of resistance to black pod disease in Cocoa (Theobroma cacao L.). American Journal of Biochemistry and Molecular Biology, 3, 20–37.

    Article  CAS  Google Scholar 

  • Peltonen, S., & Karjalainen, R. (1995). Phenylalanine Ammonia-lyase activity in barley after infection with Bipolaris sorokiniana or treatment with its purified xylanase. Journal of Phytopathology, 143, 239–245.

    Article  CAS  Google Scholar 

  • Podile, A. R., & Laxmi, V. D. V. (1998). Seed bacterization with Bacillus subtilis AF 1 increase phenylalanine ammonia lyase and reduces the incidence of Fusarial wilt in pigeonpea. Journal of Phytopathology, 146, 255–259.

    Article  CAS  Google Scholar 

  • Ralton, J. E., Howlett, B. J., Clarke, A. E., Irwin, J. A. G., & Imrie, B. (1988). Interaction of cowpea and Phytophthora vignae inheritance of resistance and production of phenylalanine ammonia-lyase as a resistance response. Physiological and Molecular Plant Pathology, 32, 89–103.

    Article  CAS  Google Scholar 

  • Rengel, D., Graham, R., & Pedler, J. (1994). Time course of biosynthesis of phenolics and lignin in roots of wheat genotypes differing in manganese efficiency and resistance to take-all fungus. Annals of Botany, 74, 471–747.

    Article  CAS  Google Scholar 

  • Ride, J. P. (1978). The role of cell wall alterations in resistance to fungi. Annals of Applied Biology, 89, 302–306.

    Google Scholar 

  • Rosyara, U. R., Subedi, S., Duveiller, E., & Sharma, R. C. (2010). Photochemical efficiency and SPAD value as indirect selection criteria for combined selection of spot blotch and terminal heat stress in wheat. Journal of Phytopathology, 158, 813–821.

    Article  Google Scholar 

  • Saari, E. E., & Prescott, J. M. (1975). A scale for appraising the foliar intensity of wheat diseases. Plant Disease Reporter, 59, 377–380.

    Google Scholar 

  • SAS (2010) SAS Institute Inc., Cary

  • Sathiyanathan, S., & Vidhyasekaran, P. (1981). Role of phenolics in brown spot disease resistance in rice. Indian Phytopathology, 34, 225–227.

    CAS  Google Scholar 

  • Schäfer, P., Hückelhoven, R., & Kogel, K. (2004). The white barley mutant albostrians shows a supersusceptible but symptomless interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana. Molecular Plant-Microbe Interaction, 17, 366–373.

    Article  Google Scholar 

  • Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry, 30, 3875–3883.

    Article  CAS  Google Scholar 

  • Schlemmer, M. R., Francis, D. D., Shanahan, J. F., & Schepers, J. S. (2005). Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agronomy Journal, 97, 106–112.

    Article  CAS  Google Scholar 

  • Shrestha, K. K., Timila, R. D., Mahto, B. N., & Bimb, H. P. (1998). Disease incidence and disease loss due to foliar blight of wheat in Nepal. In E. Duveiller, H. J. Dubin, J. Reeves, & A. McNab (Eds.), Helminthosporium Blights of Wheat: Spot Blotch and Tan Spot (pp. 67–72). Mexico: CIMMYT.

    Google Scholar 

  • Sillero, J. C., & Rubiales, D. (2001). Histological characterization of resistance to Uromyces viciaefabae in faba bean. Phytopathology, 92, 294–299.

    Article  Google Scholar 

  • Southerton, S. G., & Deverall, B. J. (1999). Changes in phenylalanine ammonia-lyase and peroxidase activities in wheat cultivars expressing resistance to the leaf-rust fungus. Plant Pathology, 39, 223–230.

    Article  Google Scholar 

  • Thilagavathi, R., Saravanakumar, D., Ragupathi, N., & Samiyappan, R. (2007). A combination of biocontrol agents improves the management of dry root rot (Macrophomina phaseolina) in green gram. Phytopathology Mediterranean, 46, 157–167.

    CAS  Google Scholar 

  • van Beueningen, L., & Kohli, M. M. (1990). Deviation from the regression of infection on heading and height as a measure of resistance in Septoria tritici blotch in wheat. Plant Disease, 79, 892–897.

    Google Scholar 

  • van der Plank, J. E. (1963). Plant diseases: epidemics and control. New York: Academic.

    Google Scholar 

  • van Ginkel, M., & Rajaram, S. (1998). Breeding for resistance to spot blotch in wheat: global perspective. In E. Duveiller, H. J. Dubin, J. Reeves, & A. McNab (Eds.), Helminthosporium blights of wheat: spot blotch and tan spot (pp. 162–169). Mexico: CIMMYT.

    Google Scholar 

  • Wink, M. (1988). Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theoretical Applied Genetics, 75, 225–233.

    Article  CAS  Google Scholar 

  • Wenzel, G. (1985). Strategies in unconventional breeding for disease resistance. Annual Review of Phytopathology, 123, 149–172.

    Article  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konjak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramesh Chand or Arun K Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisa, M., Chand, R. & Joshi, A.K. Biochemical and histochemical traits: a promising way to screen resistance against spot blotch (Bipolaris sorokiniana) of wheat. Eur J Plant Pathol 137, 805–820 (2013). https://doi.org/10.1007/s10658-013-0290-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0290-8

Keywords

Navigation