Skip to main content
Log in

Head-blighting populations of Fusarium culmorum from Germany, Russia, and Syria analyzed by microsatellite markers show a recombining structure

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium culmorum is a haploid, worldwide occurring phytopathogenic fungus causing seedling blight, foot rot, and head blight of cereals and producing the mycotoxins deoxynivalenol (DON) and nivalenol (NIV) associated with health hazards in human and animals. The fungus reproduces asexually by conidiospores, a teleomorph is not known. We analyzed for the first time naturally occurring F. culmorum populations collected randomly in the field from infected wheat heads. A total of 186 isolates, from three populations from Germany (GER), Russia (RUS), Syria (SYR), as well as an international collection (INT) for comparison, were genotyped by 10 microsatellite (SSR, single sequence repeat) markers. A high genetic diversity within the three natural populations and the INT population as well was detected. About 90 % of multi-locus haplotypes (MLH) were unique across populations. The largest part of variance (81 %) was found within populations. Accordingly, population subdivision was low, fixation indices were significant only in one out of six comparisons, while estimates of gene flow (N m ) ranged from 0.8–4.8. Linkage equilibrium was revealed by the index of multi-locus association and the quotient of observed and expected variance when two linked markers were deleted. DON and NIV chemotypes grouped closely together in a principle coordinate analysis. SYR isolates were partly separated from GER and RUS populations. All population-genetic parameters were in a similar range compared to those for the sexually propagating species F. graminearum. In conclusion, results support the hypothesis of a recombining structure in F. culmorum as revealed by the high genetic variation within populations, a low fixation index and low gametic phase disequilibrium within populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramson, D., Clear, R. M., Gaba, D., Smith, D., Patrick, S. K., & Saydak, D. (2001). Trichothecene and moniliformin production by Fusarium isolates from western Canadian wheat. Journal of Food Protection, 64, 1220–1225.

    PubMed  CAS  Google Scholar 

  • Agapow, P.-M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular and Ecological Notes, 1, 101–102.

    Article  CAS  Google Scholar 

  • Audenaert, K., van Broeck, R., van Bekaert, B., de Witte, F., Heremans, B., Messens, K., et al. (2009). Fusarium head blight (FHB) in Flanders: population diversity, inter-species associations and DON contamination in commercial winter wheat varieties. European Journal of Plant Pathology, 125, 445–458.

    Article  Google Scholar 

  • Bakan, B., Pinson, L., Cahagnier, B., Melcion, D., Sémon, E., & Richard-Molard, D. (2001). Toxigenic potential of Fusarium culmorum strains isolated from French wheat. Food Additives and Contaminants, 18, 998–1003.

    Article  PubMed  CAS  Google Scholar 

  • Çepni, E., Tunali, B., & Gürel, F. (2012). Genetic diversity and mating types of Fusarium culmorum and Fusarium graminearum originating from different agro-ecological regions in Turkey. Journal of Basic Microbiology, 52, 1–9.

    Google Scholar 

  • Demeke, T., Clear, R. M., Patrick, S. K., & Gaba, D. (2005). Species-specific PCR —based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. International Journal of Food Microbiology, 103, 271–284.

    Article  PubMed  CAS  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detection the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620.

    Article  PubMed  CAS  Google Scholar 

  • Gang, G., Miedaner, T., Schuhmacher, U., Schollenberger, M., & Geiger, H. H. (1998). Deoxynivalenol and nivalenol production by Fusarium culmorum isolates differing in aggressiveness toward winter rye. Phytopathology, 88, 879–884.

    Article  PubMed  CAS  Google Scholar 

  • Gargouri, S., Bernier, L., Hajlaoui, M. R., & Marrakchi, M. (2003). Genetic variability and population structure of the wheat foot rot fungus, Fusarium culmorum, in Tunisia. European Journal of Plant Pathology, 109, 807–815.

    Article  CAS  Google Scholar 

  • Gerlach, W., & Nirenberg, H. (1982). The Genus Fusarium — a Pictorial Atlas. Mitteilungen aus der Biologischen Bundesanstalt für Land- u. Forstwirtschaft, vol. 209.

  • Giraud, T., Fournier, E., Vautrin, D., Solignac, M., Vercken, E., Bakan, B., et al. (2002). Isolation of eight polymorphic microsatellite loci using an enrichment protocol, in the phytopathogenic fungus Fusarium culmorum. Molecular Ecology Notes, 2, 121–123.

    Article  CAS  Google Scholar 

  • Gordon, D. M. (1997). The genetic structure of Escherichia coli populations in feral house mice. Microbiology, 143, 2039–2046.

    Article  PubMed  CAS  Google Scholar 

  • Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, D. L., & Clark, A. G. (2007). Principles of population genetics (4th ed.). Minnesota: Sinauer Associates Press. 652 pp.

    Google Scholar 

  • Jennings, P., Coates, M. E., Turner, J. A., Chandler, E. A., & Nicholson, P. (2004). Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathology, 53, 182–190.

    Article  CAS  Google Scholar 

  • Kammoun, L. G., Gargouri, S., Barreau, C., Richard-Forget, F., & Hajlaoui, M. R. (2010). Trichothecene chemotypes of Fusarium culmorum infecting wheat in Tunisia. International Journal of Food Microbiology, 140, 84–89.

    Article  PubMed  CAS  Google Scholar 

  • Kosiak, B., Skjerve, E., Thrane, U., & Torp, M. (2003). The prevalence and distribution of Fusarium species in Norwegian cereals: a survey. Acta Agriculturae Scandinavica, 53, 168–176.

    Google Scholar 

  • Langseth, W., Bernhoft, A., Rundberget, T., Kosiak, B., & Gareis, M. (1999). Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals. Mycopathologia, 144, 103–113.

    Article  CAS  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Iowa: Blackwell publishing. 388 pp.

    Book  Google Scholar 

  • Lienemann, K. (2002). Incidence of Fusarium species in winter wheat in the Rhineland and possibilities of control with special reference to wheat cultivars. Ph.D. Thesis, Universitaet Bonn, Germany.

  • McDonald, B. A., & Linde, C. (2002). The population genetics of plant pathogens and breeding for durable resistance. Euphytica, 124, 163–180.

    Article  CAS  Google Scholar 

  • Miedaner, T., Gang, G., & Geiger, H. H. (1996). Quantitative-genetic basis of aggressiveness of 42 isolates of Fusarium culmorum for winter rye head blight. Plant Disease, 80, 500–504.

    Article  Google Scholar 

  • Miedaner, T., Reinbrecht, C., Lauber, U., Schollenberger, M., & Geiger, H. H. (2001). Effects of genotype and genotype x environment on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breeding, 120, 97–105.

    Article  CAS  Google Scholar 

  • Miedaner, T., Cumagun, C. J. R., & Chakraborty, S. (2008). Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156, 129–139.

    Article  Google Scholar 

  • Mirocha, C. J., Xie, W., Xu, Y., Wilcoxson, R. D., Woodward, R. P., Etebarian, R. H., et al. (1994). Production of trichothecene mycotoxins by Fusarium graminearum and Fusarium culmorum or barley and wheat. Mycopathologia, 128, 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, P. K., Fox, R. T. V., & Culham, A. (2002). Restriction analysis of PCR amplified nrDNA regions revealed intraspecific variation within populations of Fusarium culmorum. FEMS Microbiology Letters, 215, 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, P. K., Fox, R. T. V., & Culham, A. (2003). Inter-simple sequence repeat and aggressiveness analyses revealed high genetic diversity, recombination and long-range dispersal in Fusarium culmorum. Annals of Applied Biology, 143, 291–301.

    Article  CAS  Google Scholar 

  • Muthomi, J. W., Schütze, A., Dehne, H. W., Mutitu, E. W., & Oerke, E. C. (2000). Characterization of Fusarium culmorum isolates by mycotoxin production and aggressiveness to winter wheat. Journal of Plant Diseases and Protection, 107, 113–123.

    CAS  Google Scholar 

  • Naef, A., & Défago, G. (2006). Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. European Journal of Plant Pathology, 116, 129–143.

    Article  CAS  Google Scholar 

  • O’Donnell, K., Kistler, H. C., Tacke, B. K., & Casper, H. H. (2000). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America, 97, 7905–7910.

    Article  PubMed  Google Scholar 

  • Obanor, F., Erginbas-Orakci, G., Tunali, B., Nicol, J. M., & Chakraborty, S. (2010). Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal Biology, 114, 753–765.

    Article  PubMed  Google Scholar 

  • Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathology, 44, 207–238.

    Article  Google Scholar 

  • Peakall, R., & Smouse, P. E. (2006). Genalex 6: genetic analysis in Excel. Population genetics software for teaching and research. Molecular Ecology Notes, 6, 288–295.

    Article  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnely, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    PubMed  CAS  Google Scholar 

  • Puhalla, J. E. (1981). Genetic considerations of the genus Fusarium. In P. E. Nelson, T. A. Toussoun, & R. J. Cook (Eds.), Fusarium: diseases, biology and taxonomy (pp. 291–305). Pennsylvania: The Pennsylvania State University Press.

    Google Scholar 

  • Salamati, S., Zhan, J., Burdon, J. J., & McDonald, B. A. (2000). The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow and regular recombination. Phytopathology, 90, 901–908.

    Article  PubMed  CAS  Google Scholar 

  • Scherm, B., Balmas, V., Spanu, F., Pani, G., Delogu, G., Pasquali, M., et al. (2013). Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Molecular Plant Pathology, 14, 323–341.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, S. D., & Michener, C. D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.

    Google Scholar 

  • Suga, H., Gale, L. R., & Kistler, H. C. (2004). Development of VNTR markers for two Fusarium graminearum clade species. Molecular and Ecology Notes, 4, 468–470.

    Article  CAS  Google Scholar 

  • Talas, F., Parzies, H. K., & Miedaner, T. (2011). Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. European Journal of Plant Pathology, 131, 39–48.

    Article  Google Scholar 

  • Tóth, B., Mesterhazy, A., Nicholson, P., Teren, J., & Varga, J. (2004). Mycotoxin production and molecular variability of European and American isolates of Fusarium culmorum. European Journal of Plant Pathology, 110, 587–599.

    Article  Google Scholar 

  • Verstraete, F. (2008). European Union Legislation on mycotoxins in food and feed. Overview of the decision-making process and recent and future developments. In J. F. Leslie, R. Bandyopadhyay, & A. Visconti (Eds.), Mycotoxins: Detection methods, management, public health and agricultural trade (pp. 77–99). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Vigier, B., Reid, L. M., Seifert, K. A., Sterwert, D. W., & Hamilton, R. I. (1997). Distribution and prediction of Fusarium species associated with maize ear rot in Ontario. Canadian Journal of Plant Pathology, 19, 60–65.

    Article  Google Scholar 

  • Vogelgsang, S., Windmer, F., Jenny, E., & Enkerli, J. (2009). Characterisation of novel Fusarium graminearum microsatellite markers in different Fusarium species from various countries. European Journal of Plant Pathology, 123, 477–482.

    Article  CAS  Google Scholar 

  • Waalwijk, C., Kastelein, P., de Vries, I., Kerenyi, Z., Van der Lee, T., Hesselink, T., et al. (2003). Major changes in Fusarium spp. in wheat in the Netherlands. European Journal of Plant Pathology, 10, 743–754.

    Article  Google Scholar 

  • Wagacha, J. M., & Muthomi, J. W. (2007). Fusarium culmorum; infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Protection, 26, 877–885.

    Article  CAS  Google Scholar 

  • Xu, X., Parry, D., Nicholson, P., Thomsett, M., Simpson, D., Edwards, S., et al. (2005). Predominance and association of pathogenic fungi causing Fusarium ear blight in wheat in four European countries. European Journal of Plant Pathology, 112, 143–154.

    Article  Google Scholar 

  • Yörük, E., & Albayrak, G. (2012). Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by PCR assay. Mycopathologia, 173, 53–61.

    Article  PubMed  Google Scholar 

  • Zhang, H., Zhang, Z., Van der Lee, T., Xu, J., Yang, L., Yu, D., et al. (2010). Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology, 100, 328–336.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the German Academic Exchange Service (DAAD), Bonn, Germany, by grants to FT and FC, and the State Plant Breeding Institute of the Universitaet Hohenheim, Germany. We thank Prof. Dr. M. Levitin and Dr. T. Yu. Gagkaeva (All-Russian Institute of Plant Protection, Saint-Petersburg, Russia) for generously sharing the RUS population with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Miedaner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file 1 - Supplementary Table S1

Details of the isolates from the international collection (NA = not available) (DOCX 29 kb)

Additional file 2 - Supplementary Table S2

Name, use and sequence of oligonucleotides and the product size (DOCX 27 kb)

Additional file 3 - Supplementary Figure S1

Determination of the optimal number of clusters (K) among all isolates used in this study (DOCX 67.3 kb)

Additional file 4 - Supplementary Table S3

Variation among (Va) and between (Vb) populations, fixation index (Fst) and gene flow (Nm) for the individual ten SSR loci (DOCX 21 kb)

Additional file 5 - Supplementary Figure S2

Projection of the used primers on the draft genetic map of Fusarium graminearum (*Two primers F10 and F11 could not be assigned) (JPEG 2182 kb)

High resolution image (EPS 709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miedaner, T., Caixeta, F. & Talas, F. Head-blighting populations of Fusarium culmorum from Germany, Russia, and Syria analyzed by microsatellite markers show a recombining structure. Eur J Plant Pathol 137, 743–752 (2013). https://doi.org/10.1007/s10658-013-0284-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0284-6

Keywords

Navigation