Isolation and genetic characterization of Acidovorax avenae from red stripe infected sugarcane in Northwestern Argentina

Abstract

Red stripe is a bacterial disease of sugarcane causing important economic losses in Argentina that affects 30 % of the milling stems and consequently the juice quality. In this study, sugarcane leaves exhibiting red stripe symptoms were sampled in the 2008–09 growing season from 13 different sugarcane producing areas of Tucumán and Salta (northwest of Argentina). To achieve the identification and characterization of the causal agent of red stripe, bacterial isolation was performed. Species-specific PCR using Oaf1/Oar1 primers allowed the amplification of a fragment of 550 bp from approximately 50 % of the isolates; 16S rDNA sequences analysis displayed a similarity greater than 99 % with Acidovorax avenae subsp. avenae. By means of RAPD-PCR the presence of at least four different biotypes among the analyzed isolates was detected. Results of pathogenicity test allowed us to confirm A. avenae subsp. avenae as the pathogenic agent for red stripe. This study constitutes the first report on the identification and molecular characterization of this plant pathogen from the Argentina sugarcane production areas. The genetic diversity observed among A. avenae is an important factor to be considered to improve an accurate diagnosis and/or the selection of sugarcane tolerant clones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Altschul, S., Madden, T., Schäffer, A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 1, 25(17), 3389–3402.

    Article  CAS  Google Scholar 

  2. Ausubel, F., Brent, R., Kingston, D., Moore, D., Seldman, J., Smith, A., & Struhl, K. (1992). Current protocols in molecular biology, V.1. New York: Greene Publishing Associates and Wiley Interscience.

    Google Scholar 

  3. Che, F., Iwano, M., Tanaka, N., Takayama, S., Minami, E., Shibuya, N., et al. (1999). Biochemical and morphological features of rice cell death induced by Pseudomonas avenae. Plant and Cell Physiology, 40, 1036–1045.

    Article  CAS  Google Scholar 

  4. Cocconcelli, P., Porro, D., Galandini, S., & Senini, L. (1995). Development of RAPD protocol for typing of strains of lactic acid bacteria and enterococci. Letters in Applied Microbiology, 21, 376–379.

    PubMed  Article  CAS  Google Scholar 

  5. Cottyn, B., Cerez, M., Van Outryve, M., Barroga, J., Swings, J., & Mew, T. (1996). Bacterial diseases of rice. I. Pathogenic bacteria associated with sheath rot complex and grain discoloration of rice in the Philippines. Plant Disease, 80, 429–437.

    Article  Google Scholar 

  6. Fontana, C., Cocconcelli, P., & Vignolo, G. (2005). Monitoring the bacterial population dymanics during fermentation of artisanal Argentinean sausages. International Journal of Food Microbiology, 103, 131–142.

    PubMed  Article  CAS  Google Scholar 

  7. Giglioti, E. A., & Matsuoka, S. (2000). False red stripe. In P. Rott, R. A. Bailey, J. C. Comstock, B. J. Croft, & A. S. Saumtally (Eds.), A guide to sugarcane diseases (pp. 27–31). Montpellier: CIRAD/ISSCT.

    Google Scholar 

  8. Hébert, E., Raya, R., Tailliez, P., & Savoy de Giori, G. (2000). Characterization of natural isolates of Lactobacillus strains to be used as starter cultures in dairy fermentation. International Journal of Food Microbiology, 59, 19–27.

    Google Scholar 

  9. Hilton, A., & Penn, C. (1998). Comparison of ribotyping and arbitrarily-primed PCR for molecular typing of Salmonella enterica and relationships between strains on the basis of these molecular markers. Journal of Applied Microbiology, 85, 933–940.

    PubMed  Article  CAS  Google Scholar 

  10. Hu, F., Young, J., Triggs, C., & Wilkie, J. (1997). Pathogenic relationships of the subspecies of Acidovorax avenae. Australasian Plant Pathology, 26, 227–238.

    Article  Google Scholar 

  11. Huey, B., & Hall, J. (1989). Hypervariable DNA fingerprinting Escherichia coli: minisatellite probe from bacteriophage M13. Journal of Bacteriology, 171, 2528–2532.

    PubMed  CAS  Google Scholar 

  12. Jones, J. B., Gitaitis, R., & Schaad, N. (2001). Acidovorax and Xylophilus. In N. Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (pp. 121–137). St. Paul: American Phytopathological Society Press.

    Google Scholar 

  13. Kadota, I. (1996). Studies on the pathogen of bacterial brown stripe of rice and its ecology. The Bulletin of Hokuriku National Agricultural Experiment Station, 38, 113–171.

    Google Scholar 

  14. Kadota, I., Ohuchi, A., & Nishiyama, K. (1991). Serological properties and specificity of Pseudomonas avenae Manns 1909, the causal agent of bacterial brown stripe of rice. Annals of the Phytopathological Society of Japan, 57, 268–273.

    Article  Google Scholar 

  15. Kageyama, K., Uchino, H., & Hyakumachi, M. (1998). Characterization of the hyphal swelling group of Pythium: DNA polymorphism and cultural and morphological characteristics. Plant Disease, 82, 218–222.

    Article  CAS  Google Scholar 

  16. Khoodoo, M. H., & Jaufeerally-Fakim, Y. (2006). RAPD-PCR fingerprinting and southern analysis of Xanthomonas axonopodis pv. dieffenbachiae strains isolates from different aroid host and locations. Plant Disease, 88, 980–988.

    Article  Google Scholar 

  17. Kihupi, A., Mabagala, R., & Mortensen, C. (1996). Occurrence of Acidovorax avenae subspp. avenae in rice seed in Tanzania. African Plant Protection, 5, 55–58.

    Google Scholar 

  18. Klijn, N., Weerkamp, H., & de Vos, W. (1991). Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable region of 16S rRNA and specific DNA probes. Applied and Environmental Microbiology, 57, 3390–3393.

    Google Scholar 

  19. Maccheroni, W., & Matsuoka, S. (2006). Manejo das principais doenças da cana-de-açúcar. In S. Segato, A. PintodeSene, E. Jendiroba, & J. de Nóbrega (Eds.), Atualização em produção de Cana-de-açúcar (pp. 239–280). Brasil: Piracicaba.

    Google Scholar 

  20. Mariotti, J. A. (2008). Investigación e Innovación Tecnológica como bases para mejorar la productividad y competitividad de la Agroindustria de la Caña de Azúcar. In C. En, P. Senigagliesi, Y. Arnozis, & J. Mariotti (Eds.), Idia XXI Cultivos Industriales Año VII-Nº10 (pp. 119–122). Argentina: Publicaciones nacionales INTA. Bs.As.

    Google Scholar 

  21. Martin, J. P., & Wismer, C. A. (1989). Red stripe. In C. Ricaud, B. T. Egan, A. G. Gillespie, & C. G. Hughes (Eds.), Diseases of sugarcane (pp. 80–91). New York: Elsevier.

    Google Scholar 

  22. Mesquita, A., Paula, T., Moreira, M., & De Barros, E. (1998). Identification of races of Colletotrichum lindemuthianum with the aid of PCR-based molecular markers. Plant Disease, 82, 1084–1087.

    Article  CAS  Google Scholar 

  23. Parent, J., Lacroix, M., Pagé, D., Vézina, L., & Végiard, S. (1996). Identification of Erwinia carotovora from soft rot diseased plants by random amplified polymorphic DNA (RAPD) analysis. Plant Disease, 80, 494–499.

    Article  Google Scholar 

  24. Pérez Gómez, S., Vallejo, J., Fontana, P., & Rago, A. (2010). Evaluación de estría roja en los cañaverales de Tucumán. In XVI Reunión Técnica Nacional de la Caña de Azúcar. Tucumán, Argentina. Resumen Nº 48.

  25. Pooler, M., Ritchie, D., & Hartung, J. (1996). Genetic relationships among strains of Xanthomonas fragariae based on random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR and Enterobacterial repetitive intergenic consensus PCR primers useful for the identification of this phytopathogen. Applied and Environmental Microbiology, 62, 3121–3127.

    PubMed  CAS  Google Scholar 

  26. Rott, P., & Davis, M. J. (2000). Red stripe (Top rot). In P. Rott, R. A. Bailey, J. C. Comstock, B. J. Croft, & A. S. Saumtally (Eds.), A guide to sugarcane diseases (pp. 60–62). Montpellier: CIRAD/ISSCT.

    Google Scholar 

  27. Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria (3rd ed.). Minnesota: St.Paul.

    Google Scholar 

  28. Schaad, N., Postnikova, E., Sechler, A., Claflin, L., Vidaver, A., Jones, J., et al. (2008). Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli (Schaad et al. 1978) comb. nov., and proposal of A. oryzae sp. nov. Systematic and Applied Microbiology, 31, 434–446.

    PubMed  Article  CAS  Google Scholar 

  29. Shakya, D. D. (1987). Rapid diagnosis of Pseudomonas avenae by pathogenicity and serology. Korean Journal of Plant Pathology, 3, 300.

    Google Scholar 

  30. Shakya, D. D., & Chung, H. S. (1983). Detection of Pseudomonas avenae in rice seeds. Seed Science & Technology, 11, 583–587.

    Google Scholar 

  31. Singh, N., Somai, B., & Pillay, D. (2005). Molecular profiling demonstrates limited diversity amongst geographically separate strains of Ustilago scitaminea. FEMS Microbiology Letters, 247, 7–15.

    PubMed  Article  CAS  Google Scholar 

  32. Song, W., Sechler, A., Hatziloukas, E., Kim, H., & Schaad, N. (2003). Use of PCR for rapid identification of Acidovorax avenae and A. avenae subsp. citrulli. In N. S. Iacobellis, A. Collmer, S. W. Hutcheson, J. W. Mansfield, C. E. Morris, J. Murillo, N. W. Schaad, D. E. Stead, G. Surico, & M. Ullrich (Eds.), Pseudomonas syringae and related pathogens (pp. 531–544). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  33. Song, W., Kim, H., Hwang, C., & Schaad, N. (2004). Detection of Acidovorax avenae ssp. avenae in rice seeds using BIO-PCR. Phytopathology, 152, 667–676.

    Article  CAS  Google Scholar 

  34. Summer, D. R., & Schaad, N. W. (1977). Epidemiology and control of bacterial leaf blight of corn (Pseudomonas avenae). Phytopathology, 67, 1113–1118.

    Article  Google Scholar 

  35. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K., & De Ley, J. (1992). Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. International Journal of Systematic Bacteriology, 42, 107–119.

    PubMed  Article  CAS  Google Scholar 

  36. Zeigler, R. S., & Alvarez, E. (1989). Differential culture medium for Pseudomonas species causing sheath rot (ShR) and grain discoloration (GID) of rice. International Rice Research Newsletters, 14, 27–28.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Instituto Nacional de Tecnología Agropecuaria (INTA) from Argentina, with funds for training and postgraduate education. We are particularly grateful to Drs. F. Sesma and R. Raya from CERELA-CONICET for their assistance during this work, to Dr. Martin Zumarraga from Instituto de Biotecnología (INTA-Castelar) for statistical analysis, to MSc Roberto Sopena from INTA-Famaillá as well as to Dr. Juan Carlos Diaz Ricci from INSIBIO-CONICET for fruitful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paola D. Fontana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fontana, P.D., Rago, A.M., Fontana, C.A. et al. Isolation and genetic characterization of Acidovorax avenae from red stripe infected sugarcane in Northwestern Argentina. Eur J Plant Pathol 137, 525–534 (2013). https://doi.org/10.1007/s10658-013-0263-y

Download citation

Keywords

  • Sugarcane
  • Red stripe
  • Acidovorax
  • RAPD-PCR
  • Genetic diversity