European Journal of Plant Pathology

, Volume 137, Issue 3, pp 495–504 | Cite as

Rhabdocline needle cast—investigations on various Douglas fir tissue types

  • Kristin MorgensternEmail author
  • Matthias Döring
  • Doris Krabel


Douglas fir (Pseudotsuga menziesii) is one of the most important non-indigenous tree species in Germany. The species is characterized by a wide amplitude of growing conditions, and is of increasing interest, in particular from the perspective of climate change. Douglas fir is nevertheless particularly susceptible to fungal pathogens, such as Rhabdocline pseudotsugae . The aim of the present study was therefore to develop an early detection method for R. pseudotsugae based on the polymerase chain reaction (PCR). Existing molecular techniques were adapted and optimized to detect the pathogen in small sample volumes. Both healthy and infected Douglas firs were examined, with various tissue types (buds, cambial tissue, needles) and seeds tested for the presence of R. pseudotsugae. Non-infected Douglas firs did not give positive responses in the molecular analyses, but the pathogen was clearly detected in buds, cambial tissues, needles and seeds of infected trees. To date, the fungus has been considered an obligate biotrophic needle parasite. The present results provide clear evidence, however, for the existence of an endophytic stage in the life cycle of R. pseudotsugae. In contrast with previous studies, this paper investigates the dispersal of the fungus via seeds.


Endophytes Fungal distribution Rhabdocline pseudotsugae Polymerase chain reaction Pseudotsugae menziesii 



We would like to express our thanks to Sachsenforst (Graupa) and Forstbotanischer Garten Tharandt for the supply of plant material and seeds. We would also like to thank Astrid Sahre and Katrin Winkler (Institute of Forest Botany and Forest Zoology, TU Dresden) for their valuable support in the laboratory. We also thank the anonymous referees for their helpful comments and for improving the manuscript. The study was financially supported by the Federal Ministry of Education and Research (BMBF—program “Biotechnology—BioChance”, project KLONFORST).


  1. Bahnweg, G., Sandermann, H., Möller, E. M., & Schilling, A. G. (1994). Restriktionsfragment- Längenpolymorphismen (RFLPs) der Nadelparasiten Rhizosphaera spp. und Lophodermium spp. Zeitschrift für Mykologie, 60(1), 231–238.Google Scholar
  2. Bahnweg, G., Schubert, R., Kehr, R. D., Müller-Starck, G., Heller, W., Langebartels, C., & Sandermann, H. (2000). Controlled inoculation of Norway spruce (Picea abies) with Sirococcus conigenus: PCR-based quantification of the pathogen in host tissue and infection-related increase of phenolic metabolites. Trees, 14(8), 435–441.CrossRefGoogle Scholar
  3. Barnes, I., Kirisits, T., Wingfield, M. J., & Wingfield, B. D. (2011). Needle blight of pine caused by two species of Dothistroma in Hungary. Forest Pathology, 41, 361–369.CrossRefGoogle Scholar
  4. Berger, S. H. (1982). Die Douglasienschütte: Eine zusammenfassende Betrachtung der bisherigen Erkenntnisse über Rhabdocline pseudotsugae Syd. und Phaeocryptopus gaeumannii (T. Rohde) Petr. [Diploma thesis]. University of Göttingen.Google Scholar
  5. Bose, S. R. (1947). Hereditary (seed-borne) symbiosis in Casuarina equisetifolia. Nature (London), 159, 512–514.CrossRefGoogle Scholar
  6. Brandt, R. W. (1960). The Rhabdocline needle cast of Douglas-fir. Technical publication no. 84. Syracuse: College of Forestry Syracuse University. 66.Google Scholar
  7. Burgess, T., Wingfield, B. D., & Wingfield, M. J. (2001). Comparison of genotypic diversity in native and introduced populations of Sphaeropsis sapinea isolated from Pinus radiata. Mycological Research, 105(11), 1331–1339.CrossRefGoogle Scholar
  8. Butin, H. (1996). Krankheiten der Wald- und Parkbäume. Stuttgart-New York: Georg Thieme Verlag.Google Scholar
  9. Carroll, G. C., & Carroll, F. E. (1978). Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Canadian Journal of Botany, 56, 3034–3043.CrossRefGoogle Scholar
  10. Catal, M. (2002). Development and testing of oligonucleotide probes for detection and identification of some fungal pathogens and endophytes of conifers [doctoral dissertation]. East Lansing: Department of Plant Pathology, Michigan State University.Google Scholar
  11. Catal, M., Adams, G. C., & Fulbright, D. W. (2010). Evaluation of resistance to Rhabdocline needlecast in Douglas Fir variety Shuswap, with quantitative polymerase chain reaction. Phytopathology, 100(4), 337–344.PubMedCrossRefGoogle Scholar
  12. Chastagner, G. A. (2001). Susceptibility of intermountain Douglas-Fir to Rhabdocline needle cast when grown in the Pacific Northwest. Plant Health Progress. doi: 10.1094/PHP-2001-1029-01-RS.Google Scholar
  13. Freeman, S., & Rodrigez, P. J. (1994). Genetic conversion of a fungal plant pathogen to a non-pathogenic, endophytic mutualist. Science, 260, 75–78.CrossRefGoogle Scholar
  14. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Molecular Ecology Notes, 2(2), 113–118.CrossRefGoogle Scholar
  15. Gernandt, D. S., Camacho, F. J., & Stone, J. K. (1997). Meria laricis, an anamorph of Rhabdocline. Mycologia, 89, 735–744.CrossRefGoogle Scholar
  16. Hesse, U. (2002). Untersuchungen zur Endophytbesiedelung von Gräserökotypen und zu Symbioseeffekten durch Neotyphodium lolii in Lolium perenne-Genotypen hinsichtlich Stresstoleranz und Ertragsmerkmale [doctoral dissertation]. Martin-Luther-University Halle-Wittenberg.Google Scholar
  17. Ioos, R., Fabre, B., Saurat, C., Fourrier, C., Frey, P., & Marçais, B. (2010). Development, comparison, and validation of real-time and conventional PCR tools for the detection of the fungal pathogens causing brown spot and red band needle blights of pine. Phytopathology, 100, 105–114.PubMedCrossRefGoogle Scholar
  18. Jacobs, K. (2010). Molekularbiologische Diagnose holzzerstörender Pilze (Basidiomyceten) in Praxisproben. Internationaler Verein für Technische Holzfragen e.V., AiF 15348 BR.Google Scholar
  19. Krabel, D., & Hoppe, B. (2009). Molekulargenetische Charakterisierung von Holzpilzen. Forstwissenschaftliche Beiträge Tharandt, Beih, 8, 99–107.Google Scholar
  20. Krabel, D., & Wöhner, T. (2010). DNA-Test für Baumpilze. GaLaBau, 64(11), 38–39.Google Scholar
  21. Langer, G., Bressem, U., & Habermann, M. (2011). Diplodia-Triebsterben der Kiefer und endophytischer Nachweis des Erregers Sphaeropsis sapinea. AFZ-Der Wald, 11, 28–31.Google Scholar
  22. Leuchtmann, A., & Clay, K. (1997). The population biology of grass endophytes. In K. Esser & P. A. Lemke (eds), The Mycota vol V, part A. G. C. Carroll & P. Tudzynski (vol eds). Plant relationship (pp. 185–202). Berlin Heidelberg New York: Springer.Google Scholar
  23. Lyr, H. (1958). Die Krankheiten der Douglasie. In K. Göhre (Ed.), Die Douglasie und ihr Holz (pp. 369–401). Berlin: Akademie-Verlag.Google Scholar
  24. McCutcheon, T. L., Carroll, G. C., & Schwab, S. (1993). Genotypic diversity in populations of a fungal endophyte from Douglas fir. Mycologia, 85(2), 180–186.CrossRefGoogle Scholar
  25. McDowell, J., & Merrill, W. (1985). Rhabdocline taxa in Pennsylvania. Plant Disease, 69(8), 714–715.CrossRefGoogle Scholar
  26. Moreth, U., & Schmidt, O. (2000). Identification of indoor rot fungi by taxon-specific priming polymerase chain reaction. Holzforschung, 54(1), 1–8.CrossRefGoogle Scholar
  27. Ortiz-Garcia, S., Gernandt, D. S., Stone, J. K., Johnston, P. R., Chapela, I. H., Salas-Lizana, R., & Alvarez-Buylla, E. R. (2003). Phylogenetics of Lophodermium from pine. Mycologia, 95, 846–859.PubMedCrossRefGoogle Scholar
  28. Oses, R., Valenzuela, S., Freer, J., Sanfuentes, E., & Rodriguez, J. (2008). Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Diversity, 33, 77–86.Google Scholar
  29. Petrini, O. (1991). Fungal endophytes of tree leaves. In J. H. Andrews & S. S. Hirano (Eds.), Microbial ecology of the leaves (pp. 179–197). New York: Springer Verlag.CrossRefGoogle Scholar
  30. Petrini, O., Sieber, T. H., Toti, L., & Viret, O. (1992). Ecology, metabolite production, and substrate utilization in endophytic fungi. Natural Toxins, 1(3), 185–196.PubMedCrossRefGoogle Scholar
  31. Redman, R. S., Ranson, J. C., & Rodriguez, R. J. (1999). Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Molecular Plant-Microbe Interactions, 12(11), 969–975.CrossRefGoogle Scholar
  32. Redman, R. S., Dunigan, D. D., & Rodriguez, R. J. (2001). Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytologist, 151, 705–716.CrossRefGoogle Scholar
  33. Saikkonen, K., Faeth, S. H., Helander, M., & Sullivan, T. J. (1998). Fungal endophytes: a continuum of interactions with host plants. Annual Review of Ecology and Systematics, 29, 319–343.CrossRefGoogle Scholar
  34. Schmidt, O. (2009). Molekulare Diagnostik und Charakterisierung holzzerstörender Basidiomyceten; part 1: DNS-Techniken. Holztechnologie, 50(6), 36–40.Google Scholar
  35. Schmidt, O. (2011). Molekulare Identifizierung der Fäulniserreger in befallenen Stadtbäumen. Tagungsband 4. Mykologisches Kolloquium. Institut für Holztechnologie Dresden gemeinnützige GmbH, 43–56.Google Scholar
  36. Schmidt, O., & Moreth, U. (2000). Species-specific PCR primers in the rDNA-ITS region as a diagnostic tool for Serpula lacrymans. Mycological Research, 104(1), 69–72.CrossRefGoogle Scholar
  37. Schmidt, O., Grimm, K., & Moreth, U. (2002). Molekulare und biologische Charakterisierung von Gloeophyllum-Arten in Gebäuden. Zeitschrift für Mykologie, 68(2), 141–152.Google Scholar
  38. Sieber, T. N. (2002). Fungal root endophytes. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots. The hidden half (pp. 887–917). New York: Marcel Dekker.Google Scholar
  39. Sieber, T. N. (2007). Endophytic fungi in forest trees: are they mutualists? Fungal Biology Reviews, 21, 75–89.CrossRefGoogle Scholar
  40. Smith, D. R., & Stanosz, G. R. (2008). PCR primers for identification of Sirococcus conigenus and S. tsugae, and detection of S. conigenus from symptomatic and asymptomatic red pine shoots. Forest Pathology, 38, 156–168.CrossRefGoogle Scholar
  41. Smith, H., Wingfield, M. J., Crous, P. W., & Coutinho, T. A. (1996). Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany, 62, 86–88.Google Scholar
  42. Stephan, B. R. (1980). Prüfung von Douglasien-Herkünften auf Resistenz gegen Rhabdocline pseudotsugae in Infektionsversuchen. European Journal of Forest Pathology, 10(2–3), 152–161.Google Scholar
  43. Stephan, B. R. (1981). Douglasienschütte Merkblätter der Forstlichen Versuchs- und Forschungsanstalt Baden Württemberg, Nr. 2. Hamburg: Paul Parey.Google Scholar
  44. Toti, L., Viret, O., Horat, G., & Petrini, O. (1993). Detection of the endophyte Discula umbrinella in buds and twigs of Fagus sylvatica. European Journal of Forest Pathology, 23(3), 147–152.CrossRefGoogle Scholar
  45. v. Geyr, H. (1930). Die Douglasienschütte in Deutschland. Der Deutsche Forstwirt, 12, 371.Google Scholar
  46. v. Geyr, H. (1931). Die Douglasienschütte. Der Deutsche Forstwirt, 13(265–268), 273–275.Google Scholar
  47. v. Geyr, H. (1933). Derzeitiger Stand der Rhabdocline-Frage. Der Deutsche Forstwirt, 15, 97–99.Google Scholar
  48. Van Vloten, H. (1932). Rhabdocline pseudotsugae Sydow, oorzak eener ziwekte van Douglasspar. Proefschrift, Wageningen, The Netherlands: Landbouwhoogschool.Google Scholar
  49. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, J. J. Gelfand, Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). San Diego: Elsevier Academic Press.Google Scholar
  50. Wilson, D., & Carroll, G. C. (1994). Infection studies of Discula quercina, an endophyte of Quercus garryana. Mycologia, 86, 635–647.CrossRefGoogle Scholar
  51. Winton, L. M., Stone, J. K., & Hansen, E. M. (2007). Polymorphic microsatellite markers for the Douglas-fir pathogen Phaeocryptopus gaeumannii, causal agent of Swiss Needle Cast disease. Molecular Ecology, 7, 1125–1128.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Kristin Morgenstern
    • 1
    Email author
  • Matthias Döring
    • 2
  • Doris Krabel
    • 1
  1. 1.Technische Universität Dresden, Institute of Forest Botany and Forest ZoologyWorking Group: Molecular Physiology of Woody PlantsTharandtGermany
  2. 2.Institut für PflanzenkulturSchnegaGermany

Personalised recommendations