Advertisement

European Journal of Plant Pathology

, Volume 137, Issue 3, pp 477–493 | Cite as

A new genomovar of Pseudomonas cichorii, a causal agent of tomato pith necrosis

  • Emmanouil A. Trantas
  • Panagiotis F. Sarris
  • Evaggelia E. Mpalantinaki
  • Marianna G. Pentari
  • Filippos N. Ververidis
  • Dimitrios E. Goumas
Article

Abstract

Recent taxonomic advances, based on biochemical and genotypic processes demonstrate that the plant pathogenic species Pseudomonas cichorii consists of a cluster of closely related genomic groups. Prior to this study, three morphotype groups had been described (C1-C3), all sharing various phenotypic and biochemical characters but partially differing in their DNA content. All entities of the complex could cause disease among a variety of hosts, including lettuce, celery, chrysanthemum and others. In this study, we present the biochemical and molecular characterization of P. cichorii isolates as the causal agent of pith necrosis of tomato plants. A detailed characterization of the genetic variability among strains belonging to P. cichorii was achieved using BOX-PCR and Multi Locus Sequence Analysis utilizing three housekeeping genes (gyrB, rpoD, rpoB). In addition, a number of biochemical and physiological tests were also used for the identification of the tomato P. cichorii isolates. To our knowledge, this is the first complete biochemical, molecular and phylogenetic study of P. cichorii strains isolated from tomato plants affected by pith necrosis disease. Our findings demonstrate the emergence of a new genomovar of P. cichorii, yet another indication for the genetic heterogeneity of the species.

Keywords

Pseudomonas cichorii Pith necrosis MLSA gyrB rpoD rpoB phylogenetic analysis rep-PCR Pathogenicity 

Notes

Acknowledgments

This research was implemented through the Operational Program “Education and Lifelong Learning” and is co-financed by the European Union (European Social Fund) and Greek national funds (awarded to F.V and D.G) and partially by the Education and Research Committee, Technological Educational Institute of Crete (Research Actions of Phytopathology lab, D.G).

Supplementary material

10658_2013_258_MOESM1_ESM.doc (5.1 mb)
ESM 1 (DOC 5.14 MB)

References

  1. Ait Tayeb, L., Ageron, E., Grimont, F., & Grimont, P. A. (2005). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Research in Microbiology, 156, 763–773.PubMedCrossRefGoogle Scholar
  2. Alippi, A., Dal Bo, E., Ronco, L., López, M., López, A., & Aguilar, O. (2003). Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse. Plant Pathology, 52, 287–302.CrossRefGoogle Scholar
  3. Alivizatos, A. S. (1984). Etiology of tomato pith necrosis in Greece. Paper presented at the Proceedings of the 2nd working group Pseudomonas syringae pathovar organized by the Hellenic Phytopathological Society, Sounion, Greece.Google Scholar
  4. Alivizatos, A. S. (1985). Bacterial wilt of tomato in Greece caused by Erwinia chrysanthemi. Plant Pathology, 34, 638–639.CrossRefGoogle Scholar
  5. Alivizatos, A. S. (1986). Tomato pith necrosis caused by Pseudomonas viridiflava. Annales de l’Institut phytopathologique Benaki, 15, 41–47.Google Scholar
  6. Braun-Kiewnick, A., & Sands, D. C. (2001). Pseudomonas. In N. W. Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (pp. 84–120). APS Press.Google Scholar
  7. Buell, C. R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I. T., Gwinn, M. L., et al. (2003). The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America 100, 10181–10186.Google Scholar
  8. Buonaurio, R., Karofilakis, A., & Scortichini, M. (1993). Occurrence of Pseudomonas corrugate Roberts et Scarlett on tomato plants in Crete. Phytopathologia Mediterranea, 32, 245–246.Google Scholar
  9. Chase, A. R. (1987). Leaf and petiole rot of Ficus lyrata cv. Compacta caused by Pseudomonas cichorii. Plant Pathology, 36, 219–221.CrossRefGoogle Scholar
  10. Cladera, A. M., Sepulveda-Torres Ldel, C., Valens-Vadell, M., Meyer, J. M., Lalucat, J., & Garcia-Valdes, E. (2006). A detailed phenotypic and genotypic description of Pseudomonas strain OX1. Systematic and Applied Microbiology, 29, 422–430.Google Scholar
  11. Cottyn, B., Heylen, K., Heyrman, J., Vanhouteghem, K., Pauwelyn, E., Bleyaert, P., Van Vaerenbergh, J., Höfte, M., De Vos, P., & Maes, M. (2009). Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders. Systematic and Applied Microbiology, 32, 211–225.PubMedCrossRefGoogle Scholar
  12. Dawson, S. L., Fry, J. C., & Dancer, B. N. (2002). A comparative evaluation of five typing techniques for determining the diversity of fluorescent pseudomonads. Journal of Microbiological Methods, 50, 9–22.PubMedCrossRefGoogle Scholar
  13. De Vos, D., Bouton, C., Sarniguet, A., De Vos, P., Vauterin, M., & Cornelis, P. (1998). Sequence diversity of the oprI gene, coding for major outer membrane lipoprotein I, among rRNA group I pseudomonads. Journal of Bacteriology, 180, 6551–6556.PubMedGoogle Scholar
  14. Feil, H., Feil, W. S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., et al. (2005). Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America 102, 11064–11069.Google Scholar
  15. Felsenstein, J. (1985). Confidence-limits on phylogenies - an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  16. Garibaldi, A., Bertetti, D., Scortichini, M., & Gullino, M. L. (2005). First report of bacterial leaf spot caused by Pseudomonas cichorii on Phlox paniculata in Italy. Plant Disease, 89, 912.CrossRefGoogle Scholar
  17. Goumas, D. E., Malathrakis, N. E., & Chatzaki, A. K. (1999). Characterization of Pseudomonas viridiflava associated with a new symptom on tomato fruit. European Journal of Plant Pathology, 105, 927–932.CrossRefGoogle Scholar
  18. Joardar, V., Lindeberg, M., Jackson, R. W., Selengut, J., Dodson, R., Brinkac, L. M., et al. (2005). Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. Journal of Bacteriology, 187, 6488–6498.Google Scholar
  19. Jones, J. B., & Engelhard, A. W. (1983). Outbreak of a stem necrosis on chrysanthemum incited by Pseudomonas cichorii in Florida. Plant Disease, 67, 431–433.CrossRefGoogle Scholar
  20. King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanine and fluorescin. Journal of Laboratory and Clinical Medicine, 44, 301–307.PubMedGoogle Scholar
  21. Lelliott, R. A., Billing, E., & Hayward, A. C. (1966). A determinative scheme for the fluorescent plant pathogenic Pseudomonads. Journal of Applied Microbiology, 29, 470–489.CrossRefGoogle Scholar
  22. Liu, W. T., Marsh, T. L., Cheng, H., & Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63, 4516–4522.PubMedGoogle Scholar
  23. Louws, F. J., Fulbright, D. W., Stephens, C. T., & de Bruijn, F. J. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 60, 2286–2295.PubMedGoogle Scholar
  24. Malathrakis, N. E., & Goumas, D. E. (1987). Bacterial soft rot of tomato in plastic greenhouses in Crete. Annals of Applied Biology, 111, 115–123.CrossRefGoogle Scholar
  25. Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T., Andrew, P., Prudhomme, M., Alloing, G., Hakenbeck, R., et al. (1992). A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Research, 20, 3479–3483.PubMedCrossRefGoogle Scholar
  26. Mavrodi, D. V., Peever, T. L., Mavrodi, O. V., Parejko, J. A., Raaijmakers, J. M., Lemanceau, P., et al. (2010). Diversity and evolution of the phenazine biosynthesis pathway. Applied and Environmental Microbiology 76, 866–879.Google Scholar
  27. Meyer, J. B., Frapolli, M., Keel, C., & Maurhofer, M. (2011). Pyrroloquinoline quinone biosynthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate-solubilizing pseudomonads. Applied and Environmental Microbiology, 77, 7345–7354.Google Scholar
  28. Mirik, M., Aysan, Y., & Sahin, F. (2011). Characterization of Pseudomonas cichorii isolated from different hosts in Turkey. International Journal of Agriculture and Biology, 13, 203–209.Google Scholar
  29. Mollet, C., Drancourt, M., & Raoult, D. (1997). rpoB sequence analysis as a novel basis for bacterial identification. Molecular Microbiology, 26, 1005–1011.PubMedCrossRefGoogle Scholar
  30. Mulet, M., Bennasar, A., Lalucat, J., & Garcia-Valdes, E. (2009). An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Molecular and Cellular Probes, 23, 140–147.PubMedCrossRefGoogle Scholar
  31. Mulet, M., Lalucat, J., & García-Valdés, E. (2010). DNA sequence-based analysis of the Pseudomonas species. Environmental Microbiology, 12, 1513–1530.PubMedGoogle Scholar
  32. Murillo, J., Bardaji, L., Navarro de la Fuente, L., Fuhrer, M. E., Aguilera, S., & Alvarez-Morales, A. (2011). Variation in conservation of the cluster for biosynthesis of the phytotoxin phaseolotoxin in Pseudomonas syringae suggests at least two events of horizontal acquisition. Research in Microbiology, 162, 253–261.Google Scholar
  33. Nameth, S. T., Daughtrey, M. L., Moorman, G. W., & Sulzinski, M. A. (1999). Bacterial blight of Geranium: a history of diagnostic challenges. Plant Disease, 83, 204–212.CrossRefGoogle Scholar
  34. Palacio-Bielsa, A., Cambra, M. A., & Lopez, M. M. (2009). PCR detection and identification of plant-pathogenic bacteria: updated review of protocols (1989–2007). Journal of Plant Pathology, 91, 249–297.Google Scholar
  35. Palleroni, N. J. (1984). Pseudomonads. In N. R. Krieg (Ed.), Bergey’s manual of systematic bacteriology (pp. 141–199). Baltimore: Williams and Wilkins.Google Scholar
  36. Parkinson, N., Bryant, R., Bew, J., & Elphinstone, J. (2011). Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathology, 60, 338–344.CrossRefGoogle Scholar
  37. Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S., Mavrodi, D. V., et al. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23, 873–878.Google Scholar
  38. Pentari, M. G., Mpalantinaki, E. E., Sarris, P. F., Trantas, E. A., Ververidis, F. N., & Goumas , D. E. (2012). Characterization of bacterial isolates from pith necrosis disease of tomato. Paper presented at the 16th conference national conference organized by the Hellenic Phytopathological Society, Thessaloniki, Greece.Google Scholar
  39. Pernezny, K., Datnoff, L., & Sommerfeld, M. L. (1994). Brown stem of celery caused by Pseudomonas cichorii. Plant Disease, 78, 917–919.CrossRefGoogle Scholar
  40. Piening, L. J., & MacPherson, D. J. (1985). Stem melanosis, a disease of spring wheat caused by Pseudomonas cichorii. Canadian Journal of Plant Pathology, 7, 168–172.CrossRefGoogle Scholar
  41. Rumbou, A., & Gessler, C. (2006). Particular structure of Plasmopara viticola populations evolved under Greek island conditions. Phytopathology, 96, 501–509.PubMedCrossRefGoogle Scholar
  42. Santos, S. R., & Ochman, H. (2004). Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environmental Microbiology, 6, 754–759.PubMedCrossRefGoogle Scholar
  43. Sarris, P., Abdelhalim, M., Kitner, M., Skandalis, N., Panopoulos, N., Doulis, A., & Lebeda, A. (2009). Molecular polymorphisms between populations of Pseudoperonospora cubensis from Greece and the Czech Republic and the phytopathological and phylogenetic implications. Plant Pathology, 58, 933–943.CrossRefGoogle Scholar
  44. Sarris, P. F., Karri, I. V., Goumas, D. E. (2010). First report of Pseudomonas syringae pv. alisalensis causing bacterial blight of arugula (Eruca vesicaria subsp. sativa) in Greece. New Disease Reports 22.Google Scholar
  45. Sarris, P. F., Trantas, E. A., Mpalantinaki, E., Ververidis, F., & Goumas, D. E. (2012). Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level. PLoS ONE, 7, e36090.PubMedCrossRefGoogle Scholar
  46. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy: The principles and practice of numerical classification. San Francisco: W. H Freeman and Company.Google Scholar
  47. Sokal, R. R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationships. The University of Kansas science bulletin, 38, 1409–1438.Google Scholar
  48. Soler, L., Yáñez, M. A., Chacon, M. R., Aguilera-Arreola, M. G., Catalán, V., Figueras, M. J., & Martínez-Murcia, A. J. (2004). Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. International Journal of Systematic and Evolutionary Microbiology, 54, 1511–1519.PubMedCrossRefGoogle Scholar
  49. Stapp, C. (1928). Schizomycetes (Spaltpilze oder Bakterien). In P. Sorauer (Ed.), Handbuch der Pflanzenkrankheiten (pp. 1–295). Berlin: Paul Parey.Google Scholar
  50. Stead, D. E., Simpkins, S. A., Weller, S. A., Hennessy, J., Aspin, A., Stanford, H., Smith, N. C., & Elphinstone, J. G. (2003). Classification and identification of plant pathogenic Pseudomonas species by REP-PCR derived genetic fingerprints. In N. S. Iacobellis, A. Collmer, S. W. Hutcheson, et al. (Eds.), Pseudomonas syringae and related pathogens: Biology and genetic (pp. 411–421). Dordrechts: Kluwer Academic Publishers.Google Scholar
  51. Swingle, D. B. (1925). Center rot of French endive or wilt of chicory (Cichorium intybus L.). Phytopathology, 15, 730.Google Scholar
  52. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101, 11030–11035.PubMedCrossRefGoogle Scholar
  53. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCrossRefGoogle Scholar
  54. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal-W - Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.PubMedCrossRefGoogle Scholar
  55. Trantas, E. A., Sarris, P. F., Pentari, M. G., Mpalantinaki, E. E., Ververidis, F. N., Goumas, D. E. (2012). Pseudomonas cichorii the causal agent of tomato pith necrosis in Crete. Paper presented at the 16th conference national conference organized by the Hellenic Phytopathological Society, Thessaloniki, Greece.Google Scholar
  56. Vaneechoutte, M., De Beenhouwer, H., Claeys, G., Verschraegen, G., De Rouck, A., Paepe, N., Elaichouni, A., & Portaels, F. (1993). Identification of Mycobacterium species by using amplified ribosomal DNA restriction analysis. Journal of Clinical Microbiology, 31, 2061–2065.PubMedGoogle Scholar
  57. Wilkie, P., & Dye, D. W. (1974). Pseudomonas cichorii causing tomato and celery diseases in New Zealand. New Zealand Journal of Agricultural Research, 17, 123–130.CrossRefGoogle Scholar
  58. Yamamoto, S., Bouvet, P. J. M., & Harayama, S. (1999). Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization. International Journal of Systematic Bacteriology, 49, 87–95.PubMedCrossRefGoogle Scholar
  59. Yamamoto, S., Kasai, H., Arnold, D. L., Jackson, R. W., Vivian, A., & Harayama, S. (2000). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology-Uk, 146, 2385–2394.Google Scholar
  60. Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In V. Bryson & H. J. Vogel (Eds.), Evolving genes and proteins (pp. 97–166). New York: Academic.Google Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Emmanouil A. Trantas
    • 1
  • Panagiotis F. Sarris
    • 1
    • 2
  • Evaggelia E. Mpalantinaki
    • 1
  • Marianna G. Pentari
    • 1
  • Filippos N. Ververidis
    • 1
  • Dimitrios E. Goumas
    • 1
  1. 1.Department of Crop Science, School of Agricultural TechnologyTechnological Educational Institute of CreteHeraklionGreece
  2. 2.The Sainsbury Laboratory, John Innes Centre, Norwich Research ParkNorwichUK

Personalised recommendations