Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding

Abstract

Current knowledge of wild Lactuca L. species, their taxonomy, biogeography, gene-pools, germplasm collection quality and quantity, and accession availability is reviewed in this paper. Genetic diversity of Lactuca spp. is characterized at the level of phenotypic and phenological variation, variation in karyology and DNA content, biochemical traits, and protein and molecular polymorphism. The reported variation in reaction to pathogens and pests of wild Lactuca spp. is summarized, including the viral pathogens (Lettuce mosaic virus-LMV, Mirafiori lettuce virus/Lettuce big vein virus-LBV, Beet western yellows virus-BWYV, Tomato spotted wilt virus-TSWV, Cucumber mosaic virus-CMV, Lettuce necrotic stunt virus-LNSV), bacterial pathogens (corky root-Rhizomonas suberifaciens, bacterial leaf spot-Xanthomonas campestris pv. vitians), fungal pathogens (downy mildew-Bremia lactucae, powdery mildew-Golovinomyces cichoracearum, anthracnose-Microdochium panattoniana, stemphylium leaf spot-Stemphylium spp., sclerotinia drop-Sclerotinia spp., verticillium wilt-Verticillium dahliae, fusarium wilt-Fusarium spp., pythium wilt-Pythium tracheiphylum, P. uncinulatum), nematodes (potato cyst nematode-Globodera rostochiensis, root-knot nematode-Meloidogyne spp., incognita, hapla, javanica, enterolobii), insects and mites (the green lettuce aphid-Nasonovia ribisnigri, the green peach aphid-Myzus persicae, the potato aphid-Macrosiphum euphorbiae, leafminer-Liriomyza spp., L. langei). The approaches used to exploit wild Lactuca spp. in lettuce breeding (interspecific hybridization, cell and tissue culture, transformation) are dicussed, and known examples of lettuce cultivars with traits derived from wild Lactuca spp. are described.

This is a preview of subscription content, log in to check access.

References

  1. Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69, 899–904.

    Google Scholar 

  2. Abawi, G. S., & Robinson, R. W. (1991). Reaction of selected lettuce germplasm to artificial inoculation by Meloidogyne hapla in the greenhouse. Journal of Nematology, 23, 519.

    Google Scholar 

  3. Abawi, G. S., Robinson, R. W., Cobb, A. C., & Shail, J. W. (1980). Reaction of lettuce germplasm to artificial inoculation with Sclerotinia minor under greenhouse conditions. Plant Disease, 64, 668–671.

    Google Scholar 

  4. Addoh, P. G. (1971). The distribution and economic importance of plant parasitic nematodes in Ghana. Ghana Journal of Agricultural Science, 4, 21–32.

    Google Scholar 

  5. Agrawal, A. A., & Konno, K. (2009). Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. The Annual Review of Ecology, Evolution, and Systematics, 40, 311–331.

    Google Scholar 

  6. Alconero, R. (1988). Lettuce (Lactuca sativa L.). In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry (pp. 351–369). Berlin: Springer.

    Google Scholar 

  7. Alleyne, E. H., & Morrison, F. O. (1977). The lettuce root aphid, Pemphigus bursarius (L.) (Homoptera: Aphidoidea) in Quebec, Canada. Annals of Entomological Society Quebec, 22, 171–180.

    Google Scholar 

  8. Anonymous (2005). Development of lettuce breeding lines resistant to bacterial leaf spot. HortScience, 40, 1098.

  9. Anonymous (2008). Resistance to the lettuce leaf aphid Nasonovia ribisnigri. Disclosure Number IPCOM000176078D dated 4 Nov. 2008. IP.com Prior Art Database Disclosure. <http://ip.com/IPCOM/000176078>.

  10. Anwar, S. A., & McKenry, M. V. (2012). Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pakistan Journal of Zoology, 44, 327–333.

    Google Scholar 

  11. Argyris, J., Truco, M. J., Ochoa, O., Knapp, S. J., Still, D. V., Lenssen, G. M., et al. (2005). Quantitative trait loci associated with seed and seedling traits in Lactuca. Theoretical and Applied Genetics, 111, 1365–1376.

    PubMed  Google Scholar 

  12. Argyris, J., Truco, M. J., Ochoa, O., McHale, L., Dahal, P., van Deynze, A., et al. (2011). A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). Theoretical and Applied Genetics, 122, 95–108.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Aruga, D., Tsuchiya, N., Matsumura, H., Matsumoto, E., & Hayashida, N. (2012). Analysis of RAPD and AFLP markers linked to resistance to Fusarium oxysporum f. sp lactucae race 2 in lettuce (Lactuca sativa L.). Euphytica, 187, 1–9.

    CAS  Google Scholar 

  14. Attalah, Z. K., Hayes, R. J., & Subbarao, K. V. (2011). Fifteen years of Verticillium wilt of lettuce in America’s Salad Bowl: a tale of immigration, subjugation, and abatment. Plant Disease, 95, 784–792.

    Google Scholar 

  15. Azzu, N., & Collette, L. (2008). Addressing the conservation and sustainable utilization of crop wild relatives: the international policy context. In N. Maxted, B. V. Ford–Lloyd, S. P. Kell, J. M. Iriondo, E. Dulloo, & J. Turok (Eds.), Crop wild relative conservation and use (pp. 31–40). Wallingford: CABI.

    Google Scholar 

  16. Bannerot, H., Boulidard, L., Marron, J., & Duteil, M. (1969). Etude de la tolerance au virus de la mosaïque de laitue chez la variété Gallega de invierno. Annales Phytopathologie, 1, 219–226.

    Google Scholar 

  17. Bao, Y., & Neher, D. A. (2011). Survey of lesion and northern root-knot nematodes associated with vegetables in Vermont. Nematropica, 41, 100–108.

    Google Scholar 

  18. Barak, J. D., Koike, S. T., & Gilbertson, R. L. (2001). Role of crop debrits and weeds in the epidemiology of bacterial leaf spot of lettuce in California. Plant Disease, 85, 169–178.

    Google Scholar 

  19. Barak, J. D., Koike, S. T., & Gilbertson, R. L. (2002). Movement of Xanthomonas campestris pv. vitians in the stems of lettuce and seed contamination. Plant Pathology, 51, 506–512.

    Google Scholar 

  20. Barbosa, P. (Ed.). (1998). Conservation biological control. New York: Academic.

    Google Scholar 

  21. Beharav, A., Ben-David, R., Doležalová, I., & Lebeda, A. (2008). Eco-geographical distribution of Lactuca saligna natural populations in Israel. Israel Journal of Plant Sciences, 56, 195–206.

    Google Scholar 

  22. Beharav, A., Ben-Roi, R., Doležalová, I., & Lebeda, A. (2010a). Eco-geographical distribution of Lactuca aculeata natural population in northeastern Israel. Genetic Resources and Crop Evolution, 57, 679–686.

    Google Scholar 

  23. Beharav, A., Ben-David, R., Malarz, J., Stojakowska, A., Michalska, K., Doležalová, I., et al. (2010b). Variation of sesquiterpene lactones in Lactuca aculeata natural population from Israel, Jordan and Turkey. Biochemical Systematics and Ecology, 38, 602–611.

    CAS  Google Scholar 

  24. Beharav, A., Lewinsohn, D., Lebeda, A., & Nevo, E. (2006). New wild Lactuca genetic resources with resistance against Bremia lactucae. Genetic Resources and Crop Evolution, 53, 467–474.

    Google Scholar 

  25. Bhat, R. G., & Subbarao, K. V. (1999). Host range specificity in Verticillium dahliae. Phytopathology, 89, 1218–1225.

    CAS  PubMed  Google Scholar 

  26. Blackman, R. L., & Eastop, V. F. (2000). Aphids on the world’s crops. Chichester: John Wiley & Sons.

    Google Scholar 

  27. Blancard, D. (2011). Meloidogyne spp. (Galles racinaires des salades). INRA <(http://ephytia.inra.fr/salade/salade_utilisateur/index_appli.php?portail=legumes&produit=salade&main=1&ssrub1=8&ssrub2=10&ssrub3=16&ssrub4=81&id_fiche=28&theme=96> [last accessed 2013-02-07]

  28. Blok, I., & van der Plaats-Niterink, A. J. (1978). Pythium uncinulatum sp. nov. and P. tracheiphilum pathogenic to lettuce. Netherlands Journal of Plant Pathology, 84, 135–147.

    Google Scholar 

  29. Bos, L., & Huijberts, N. (1990). Screening for resistance to big-vein disease of lettuce (Lactuca sativa). Crop Protection, 9, 446–452.

    Google Scholar 

  30. Bos, L., Huijberts, N., & Cuperus, C. (1994). Further observations on variation of lettuce mosaic virus in relation to lettuce (Lactuca sativa) and a discussion of resistance terminology. European Journal of Plant Pathology, 100, 293–314.

    Google Scholar 

  31. Boukema, I. W., Hazekamp, T., & van Hintum, T. J. L. (1990). The CGN collection reviews: The CGN lettuce collection. Wageningen: Centre for Genetic Resources, Netherlands.

    Google Scholar 

  32. Boydson, R. A., Mojtahedi, H., Crosslin, J. M., Thomas, P. E., Anderson, T., & Riga, E. (2004). Evidence for the influence of weeds on corky ringspot persistence in alfalfa and Scotch spearmint rotations. Američan Journal of Potato Research, 81, 215–225.

    Google Scholar 

  33. Bridge, J. (1976). Plant parasitic nematodes from the lowlands and highlands of Equador. Nematropica, 6, 18–23.

    Google Scholar 

  34. Brittlebank, C. C. (1919). Tomato disease. Journal of Department of Agriculture of Victoria Australia, 17, 231–235.

    Google Scholar 

  35. Brown, P. R., & Michelmore, R. W. (1988). The genetics of corky root resistance in lettuce. Phytopathology, 78, 1145–1150.

    Google Scholar 

  36. Burdon, J. J., & Thrall, P. H. (2008). Pathogen evolution across the agro-ecological interface: implications for disease management. Evolutionary Applications, 1, 57–65.

    PubMed Central  Google Scholar 

  37. Carvalho Filho, J. L. S., Gomes, L. A. A., Westerich, J. N., Maluf, W. R., Campos, V. P., & Ferreira, S. (2008). Inheritance of resistance of ‘Salinas 88’ lettuce to the root-knot nematode Meloidogyne incognita (Kofoid & White) Chitwood. Revista Brasileira de Agrociência, 14, 279–289.

    Google Scholar 

  38. Carisse, O., Ouimet, A., Toussaint, V., & Phillon, V. (2000). Evaluation of the effect of seed treatments, bactericides, and cultivars on bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians. Plant Disease, 84, 295–299.

    Google Scholar 

  39. Chen, Y. H., Vhen, H. Y., Hsu, C. L., & Yen, G. C. (2007). Induction of apoptosis by the Lactuca indica L. in human leucemia cell line and its active components. Journal of Agricultural and Food Chemistry, 55, 1743–1749.

    CAS  PubMed  Google Scholar 

  40. Chitambar, J. J. (1993). Host range of Hemicycliophora poranga and its pathogenicity on tomato. Fundamental and Applied Nematology, 16, 557–561.

    Google Scholar 

  41. Chitambar, J. J. (2007). Status of ten quarantine “A” nematode pests in California. California Plant Pest & Disease Report, 2, 62–75.

    Google Scholar 

  42. Cho, J. J., Mau, R. F. L., German, T. L., Hartmann, R. W., Yudin, L. S., Gonsalves, D., et al. (1989). A multidisciplinary approach to management of Tomato spotted wilt virus in Hawaii. Plant Disease, 73, 375–383.

    Google Scholar 

  43. Chupp, C., & Sherf, A. F. (1960). Vegetable diseases and their control. New York: Ronald Press.

    Google Scholar 

  44. Chupeau, M. C., Maisonneuve, B., Bellec, Y., & Chupeau, Y. (1994). A Lactuca universal hybridizer, and its use in creation of fertile interspecific somatic hybrids. Molecular Genetics and Gemonics, 245, 139–145.

    CAS  Google Scholar 

  45. Cid, M., Ávila, A., Garía, A., Abad, J., & Fereres, A. (2012). New sources of resistance to letuce aphids in Lactuca spp. Arthropod-Plant Interactions, 6, 655–669.

    Google Scholar 

  46. Cole, R. A., Sutherland, R. A., & Riggall, W. E. (1991). The use of polyacrylamide gradient gel electrophoresis to identify variation in isozymes as markers for Lactuca species and resistance to the lettuce root aphid Pemphigus bursarius. Euphytica, 56, 237–242.

    CAS  Google Scholar 

  47. Coutts, B. A., Thomas-Carroll, M. L., & Jones, R. A. C. (2004). Analysing spatial patterns of spread of Lettuce necrotic yellows virus and lettuce big-vein disease in lettuce field plantings. Annals of Applied Biology, 145, 339–343.

    Google Scholar 

  48. Crute, I. R. (1992). From breeding to cloning (and back again) a case-study with lettuce downy mildew. Annual Review of Phytopathology, 30, 485–506.

    CAS  PubMed  Google Scholar 

  49. Crute, I. R., & Johnson, A. G. (1976). The genetic relationship between races of Bremia lactucae and cultivars of Lactuca sativa. Annals of Applied Biology, 83, 125–137.

    Google Scholar 

  50. Curtis, I. S., Caiping, H., Scott, R., Power, J. B., & Davey, M. R. (1996). Genomic male sterility in lettuce, a baseline for the production of F1 hybrids. Plant Science, 113, 113–119.

    CAS  Google Scholar 

  51. DAFF—Department of Agriculture, Fisheries and Forestry Biosecurity. (2012). Draft import risk analysis report for fresh ginger from Fiji. Canberra: Department of Agriculture, Fisheries and Forestry. CCBY 3.0.

    Google Scholar 

  52. D’Andrea, L., Felber, F., & Guadagnuolo, R. (2008). Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions. Environmental Biosafety Research, 7, 61–71.

    PubMed  Google Scholar 

  53. da Silveira, S. G. P. (1990). Two hosts of Aphelenchoides besseyi in Brazil. Nematologia Brasileira, 14, 146–150.

    Google Scholar 

  54. Davey, M. R., & Anthony, P. (2011). Lactuca. In C. Kole (Ed.), Wild crop relatives: genomic and breeding resources (pp. 115–128). Berlin: Heidelberg: Springer-Verlag.

    Google Scholar 

  55. Davey, M. R., Anthony, P., Power, J. B., & Lowe, K. C. (2007a). Leafy vegetables. In C. Kole & T. C. Hall (Eds.), Compendium of transgenic crop plants, Vol. 6, Transgenic vegetable crops (pp. 217–248). Chichester: Willey-Blackwell.

    Google Scholar 

  56. Davey, M. R., Anthony, P., Van Hooff, P., Power, J. B., & Lowe, K. C. (2007b). Lettuce. In E. C. Pua & M. R. Davey (Eds.), Biotechnology in agriculture and forestry, Vol. 59, Transgenic crops IV (pp. 221–249). Berlin: Springer.

    Google Scholar 

  57. Davey, M. R., McCabe, M. S., Mohapatra, U., & Power, J. B. (2002). Genetic manipulation of lettuce. In G. G. Khachatourians, A. McHughen, R. Scorza, W. K. Nip, & Y. H. Hui (Eds.), Transgenic plants and crops (pp. 613–635). New York: Marcel Dekker, Inc.

    Google Scholar 

  58. Davis, R. M., Subbarao, K. V., Raid, R. N., & Kurtz, E. A. (1997). Compendium of lettuce diseases. St. Paul: APS Press, The American Phytopathologica Society.

    Google Scholar 

  59. Davis, E. E., & Venette, R. C. (2004). Mini risk assessment false Columbia root-knot nematode: Meloidogyne fallax Karssen [Nematoda: Heteroderidae]. Department of Entomology, University of Minnesota <http://www.aphis.usda.gov/plant_health/plant_pest_info/pest_detection/downloads/pra/mfallaxpra.pdf> [last accessed 2013-01-22]

  60. Davis, R. M., Winterbottom, C. Q., & Aguiar, J. L. (1995). First report of Pythium uncinulatum on romaine lettuce in California. Plant Disease, 79, 642.

    Google Scholar 

  61. de Carvalho, J. L. S., Gomes, L. A. A., Maluf, W. R., Oliveira, R. R., Costa, D. S., Fereira, S., et al. (2011). Resistance to Meloidogyne incognita race 1 in the lettuce cultivars grand rapids and Salinas-88. Euphytica, 182, 199–208.

    Google Scholar 

  62. de Vries, I. M. (1990). Crossing experiments of lettuce cultivars and species (Lactuca sect. Lactuca, Compositae). Plant Systematics and Evolution, 171, 233–248.

    Google Scholar 

  63. Dietzgen, R. G., Callaghan, B., Wetzel, T., & Dale, J. L. (2006). Completion of the genome sequence of Lettuce necrotic yellows virus, typespecies of the genus Cytorhabdovirus. Virus Research, 118, 16–22.

    Google Scholar 

  64. Dias, J. S., & Ortiz, R. (2012a). Transgenic vegetable breeding for nutritional quality and health benefits. Food and Nutrition Sciences, 3, 1209–1219.

    Google Scholar 

  65. Dias, J. S., & Ortiz, R. (2012b). Transgenic vegetable crops: progress, potentials and prospects. Plant Breeding Rewievs, 35, 151–246.

    Google Scholar 

  66. Dickinson, M. J., Jones, D. A., & Jones, J. D. G. (1993). Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Molecular Plant-Microbe Interactions, 6, 341–347.

    CAS  PubMed  Google Scholar 

  67. Dickson, M. H. (1963). Resistance to corky root rot in head lettuce. Americain Society for Horticultural Science, 82, 388–390.

    Google Scholar 

  68. Dinant, S. (1997). Coat protein mediated protection in Lactuca sativa against lettuce mosaic potyvirus strains. Molecular Breeding, 3, 75–86.

    CAS  Google Scholar 

  69. Dinant, S., Blaise, F., Kusiak, C., Astier-Manifacier, S., & Albouy, J. (1993). Heterologous resistance to potato virus Y in transgenic tobacco plants expressing the coat protein gene of lettuce mosaic potyvirus. Phytopathology, 83, 818–824.

    Google Scholar 

  70. Dinant, S., & Lot, H. (1992). Lettuce mosaic virus: a review. Plant Pathology, 41, 528–542.

    Google Scholar 

  71. Doležalová, I., Křístková, E., Lebeda, A., & Vinter, V. (2002). Description of morphological characters of wild Lactuca L. spp. genetic resources (English-Czech version). Horticultural Science (Prague), 29, 56–83.

    Google Scholar 

  72. Doležalová, I., Křístková, E., Lebeda, A., Vinter, V., Astley, D., & Boukema, I. W. (2003a). Basic morphological descriptors for genetic resources of wild Lactuca spp. Plant Genetic Resources Newsletter, 134, 1–9.

    Google Scholar 

  73. Doležalová, I., Lebeda, A., Dziechciarková, M., Křístková, E., Astley, D., & van de Wiel, C. C. M. (2003b). Relationships among morphological characters, isozymes polymorphism and DNA variability-the impact on Lactuca germplasm taxonomy. Czech Journal of Genetics and Plant Breeding, 39, 59–67.

    Google Scholar 

  74. Doležalová, I., Lebeda, A., & Křístková, E. (2001). Prickly lettuce (Lactuca serriola L.) germplasm collecting and distribution study in Slovenia and Sweden. Plant Genetic Resources Newsletter, 128, 41–44.

    Google Scholar 

  75. Doležalová, I., Lebeda, A., Křístková, E., & Novotná, A. (2005). Morphological variation of Lactuca serriola populations from some European countries. In XVII International Botanical Congress, Vienna, Austria, 1723 July 2005, Abstracts. (p. 458).

  76. Doležalová, I., Lebeda, A., Křístková, E., & Novotná, A. (2007). Relevance of morphologic assessment of wild Lactuca spp. germplasm for their taxonomic determination. Bulletin of Botanical Gardens, Museums & Collections, Polish Botanical Society, 16A, 22.

  77. Doležalová, I., Lebeda, A., Tiefenbachová, I., & Křístková, E. (2004). Taxonomic reconsideration of some Lactuca spp. germplasm maintained in world genebank collections. Acta Horticulturae, 634, 193–201.

    Google Scholar 

  78. Dubois, V., Botton, E., Meyer, C., Rieu, A., Bedu, A., Maisonneuve, B., et al. (2005). Systematic silencing of a tobacco nitrate reductase transgene in lettuce (Lactuca sativa L.). Journal of Experimental Botany, 56, 2379–2388.

    CAS  PubMed  Google Scholar 

  79. Duffus, J. E. (1961). Economic significance of beet western yellows (radish yellows) on sugar beet. Phytopathology, 51, 605–607.

    Google Scholar 

  80. Duffus, J. E., Liu, H. Y., Wisler, G. C., & Li, R. (1996). Lettuce chlorosis virus-a new whitefly trasmitted closterovirus. European Journal of Plant Pathology, 102, 591–596.

    Google Scholar 

  81. Dunn, J. A. (1959). The biology of the lettuce root aphid. Annals of Applied Biology, 47, 475–491.

    Google Scholar 

  82. Dziechciarková, M., Lebeda, A., Doležalová, I., & Astley, D. (2004). Characterization of Lactuca spp. germplasm by protein and molecular markers-a review. Plant Soil Environment, 50, 47–58.

    Google Scholar 

  83. Edwards, M. C., Gonsalves, D., & Provvidenti, R. (1983). Genetic analysis of cucumber mosaic virus in relation to host resistence: location of determinants for pathogenicity to certain legumes and Lactuca saligna. Phytopathology, 73, 269–273.

    Google Scholar 

  84. Eenink, A. H., & Dieleman, F. L. (1983). Inheritance of resistance to the leaf aphid Nasonovia ribis-nigri in the wild lettuce species Lactuca virosa. Euphytica, 32, 691–695.

    Google Scholar 

  85. Eenink, A. H., Dieleman, F. L., & Groenwold, R. (1982a). Resistance of lettuce (Lactuca) to the leaf aphid Nasonovia ribis-nigri. 2. Inheritance of the resistance. Euphytica, 31, 301–304.

    Google Scholar 

  86. Eenink, A. H., Groenwold, R., & Dieleman, F. L. (1982b). Resistance of lettuce (Lactuca) to the leaf aphid Nasonovia ribis-nigri. 1: transfer of resistance from L. virosa to L. sativa by interspecific crosses and selection of resistant breeding lines. Euphytica, 31, 291–300.

  87. Elia, M., & Piglionica, V. (1964). Preliminary observations on the resistance of some lettuce cultivars to collar rot caused by Sclerotinia spp. Phytopathologia Mediterranea, 3, 37–39.

    Google Scholar 

  88. Ellis, P. R., McClement, S. J., Saw, P. L., Phelps, K., Vice, W. E., Kift, N. B., et al. (2002). Identification of sources of resistance in lettuce to the lettuce root aphid, Pemphigus bursarius-Resistance to lettuce root aphid. Euphytica, 125, 305–315.

    Google Scholar 

  89. Ellis, P. R., Pink, D. A. C., & Ramsey, A. D. (1994). Inheritance of resistance to lettuce root aphid in the lettuce cultivars ‘Avoncrisp’ and ‘Lakeland’. Annals of Applied Biology, 124, 141–151.

    Google Scholar 

  90. Farrara, B. F., & Michelmore, R. W. (1987). Identification of new sources of resistance to downy mildew in Lactuca spp. HortScience, 22, 647–649.

    Google Scholar 

  91. Feráková, V. (1977). The genus Lactuca L. in Europe. Bratislava: Univerzita Komenského.

    Google Scholar 

  92. Ferris, H. (2013). “The Nematode-plant expert information system”. A Virtual Encyclopedia on Soil and Plant Nematodes “NEMAPLEX”. Department of Nematology, University of California. <http://plpnemweb.ucdavis.edu/nemaplex>. [last accessed 2013-01-22]

  93. Ford-Lloyd, B., Kell, S. P., & Maxted, N. (2008). Establishing conservation priorities for crop wild relatives. In N. Maxted, B. V. Ford–Lloyd, S. P. Kell, J. M. Iriondo, E. Dulloo, & J. Turok (Eds.), Crop wild relative conservation and use (pp. 110–119). Wallingford: CABI.

    Google Scholar 

  94. Fujinaga, M., Ogiso, H., Tsuchiya, N., Saito, H., Yamanaka, S., Nozue, M., et al. (2003). Race 3, a new race of Fusarium oxysporum f. sp. lactucae determined by a differential system with commercial cultivars. Journal of General Plant Pathology, 69, 23–28.

    Google Scholar 

  95. Fry, P. R., Close. R C., Procter, C. H., & Sunde, R. (1972). Lettuce necrotic yellows virus in New Zealand. Journal of Agricultural Research, 16, 143–146.

    Google Scholar 

  96. Funk, V. A., Susanna, A., Stuessy, T. F., & Bayer, R. J. (Eds.). (2009). Systematics, evolution and biogeography of compositae. Vienna: International Association for Plant Taxonomy.

    Google Scholar 

  97. Galea, V. J., & Price, T. V. (1988). Resistance of lettuce and related species to anthracnose (Microdochium panattonianum) in Australia. Plant Pathology, 37, 363–372.

    Google Scholar 

  98. Galea, V. J., Price, T. V., & Sutton, B. C. (1986). Taxonomy and biology of the lettuce anthracnose fungus. Transactions of the British Mycological Society, 86, 619–628.

    Google Scholar 

  99. Garibaldi, A., Gilardi, G., & Gullino, M. L. (2004). Varietal resistance of lettuce to Fusarium oxysporum f. sp. lactucae. Crop Protection, 23, 845–851.

    Google Scholar 

  100. Garibaldi, A., Gilardi, G., & Gullino, M. L. (2007). First report of Verticillium wilt caused by Verticillium dahliae on lettuce in Italy. Plant Disease, 91, 990.

    Google Scholar 

  101. Gaskin, T. A. (1958). Weed hosts of Meloidogyne incognita in Indiana. Plant Disease Reporter, 42, 802–803.

    Google Scholar 

  102. George, R. A. T. (1999). Vegetable seed production (2nd ed.). Wallingford: CABI Publishing.

    Google Scholar 

  103. Gergerich, R. C., & Dolja, V. V. (2006). Introduction to plant viruses, the invisible Foe. The Plant Health Instructor. doi:10.1094/PHI-I-2006-0414-01.

    Google Scholar 

  104. German-Retana, S., Walter, J., & Le Gall, O. (2008). Lettuce mosaic virus: from pathogen diversity to host interactors. Molecular Plant Pathology, 9, 127–136.

    PubMed  Google Scholar 

  105. German-Retana, S., Candresse, T., & Martelli, G. (1999). Closteroviruses (Closteroviridae). In Encyclopedia of virology (2nd ed., pp. 266–273). San Diego: Academic.

    Google Scholar 

  106. Gharabadiyan, F., Jamali, S., Yazdi, A. A., Hadizadeh, M. H., & Eskandari, A. (2012). Weed hosts of root-knot nematodes in tomato fields. Journal of Plant Protection Research, 52, 230–234.

    Google Scholar 

  107. Giannino, D., Nicolodi, C., Testone, G., Di Giacomo, E., Iannelli, M. A., Frugis, G., et al. (2008). Pollen-mediated transgene flow in lettuce (Lactuca sativa L.). Plant Breeding, 127, 308–314.

    CAS  Google Scholar 

  108. Gilberton, R. L. (1996). Management and detection of LMV: production of LMV resistant lettuce and LMV coat protein antibodies (pp. 78–81). Iceberg Lettuce Advisory Board Annual Report.

  109. Gomes, L. A. A., Maluf, W. R., & Campos, V. P. (2000). Inherintance of the resistance reaction of the lettuce cultivar ‘Grand Rapids’ to the southern root-knot nematode Meloidogyne incognita (Kofoid & White) Chitwood. Euphytica, 114, 34–46.

    Google Scholar 

  110. Gowda, D. N., Kurdikeri, C. B., & Gowda, C. K. (1995). Weeds as hosts of root-knot nematodes. Indian Journal of Nematology, 25, 215–216.

    Google Scholar 

  111. Groenwold, R. (1983). Onderzoek van de relatie tussen Lactuca en Bremia lactucae. Verslag van een voorlichtingsbijeenkomst voor slaveredelaars (vervolg). Zaadbelangen, 37, 132.

    Google Scholar 

  112. Groves, R. L., Walgenbach, J. F., Moyer, J. W., & Kennedy, G. G. (2002). The role of weed hosts and tobacco thrips, Frankliniella fusca, in the epidemiology of tomato spotted wilt virus. Plant Disease, 86, 573–582.

    Google Scholar 

  113. Grube, R. C. (2004). Genetic analysis of resistance to lettuce drop caused by Sclerotinia minor. Acta Horticulturae, 637, 49–53.

    CAS  Google Scholar 

  114. Grube, R. C., Hayes, R., Mou, B., & McCreight, J. D. (2005a). Lettuce breeding, USDA-ARS. California Lettuce Research Board Annual Report, 2004–2005.

  115. Grube, R., & Ryder, E. (2004). Identification of lettuce (Lactuca sativa L.) germplasm with genetic resistance to drop caused by Sclerotinia minor. Journal of the American Society for Horticultiral Science, 129, 70–76.

    Google Scholar 

  116. Grube, R. C., Wintermantel, W. M., Hand, P., Aburomia, R., Pink, D. A. C., & Ryder, E. J. (2005b). Genetic analysis and mapping of resistance to lettuce dieback: a soilborne disease caused by tombusviruses. Theoretical and Applied Genetics, 110, 259–268.

    CAS  PubMed  Google Scholar 

  117. Haley, V., & McCreight, J. D. (1990). Resistance of wild lettuce (Lactuca saligna L.) to lettuce infectious yellows virus. HortScience, 25, 1163. Abstract.

    Google Scholar 

  118. Hampton, R. O., Keller, K. E., & Baggett, J. R. (1998). Beet western yellows luteovirus in Western Oregon. Plant Disease, 82, 140–148.

    Google Scholar 

  119. Hancock, J. F. (2012). Plant evolution and the origin of crop species (3rd ed.). Wallingford: CABI.

    Google Scholar 

  120. Hartman, Y., Hooftman, D. A. P., Schranz, M. E., & van Tienderen, P. H. (2013a). QTL analysis reveals the genetic architecture of domestication traits in Crisphead lettuce. Genetic Resources and Crop Evolution, 60, 1487–1500.

    Google Scholar 

  121. Hartman, Y., Hooftman, D. A., Uwimana, B., van de Wiel, C. C. M., Smulders, M. J., Visser, R. G., et al. (2012). Genomic regions in crop-wild hybrids of lettuce are affected differently in different environments: implications for crop breeding. Evolutionary Applications, 5, 629–640.

    PubMed Central  PubMed  Google Scholar 

  122. Hartman, Y., Uwimana, B., Hooftman, D. A. P., Schranz, M. E., van de Wiel, C. C. M., Smulders, M. J. M., et al. (2013b). Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses. Evolutionary Applications. doi:10.1111/eva.12043.

    PubMed Central  PubMed  Google Scholar 

  123. Hayes, R. J., Maruthachalam, K., Vallad, G. E., Klosterman, S. J., & Subbarao, K. V. (2011a). Selection for resistance to Verticillium wilt caused by race 2 isolates of Verticillium dahliae in accessions of lettuce (Lactuca sativa L.). HortScience, 46, 201–206.

    Google Scholar 

  124. Hayes, R. J., & Ryder, E. J. (2007). Introgression of novel alleles for partial resistance to big vein disease from Lactuca virosa into Cultivated Lettuce. HortScience, 42, 3539.

    Google Scholar 

  125. Hayes, R. J., Ryder, E. J., & Robinson, B. (2004). Introgression of big vein tolerance from Lactuca virosa L. into cultivated lettuce (Lactuca sativa L.). HortScience, 39, 881.

    Google Scholar 

  126. Hayes, R. J., Ryder, E. J., & Wintermantel, W. M. (2008). Genetic variation for big-vein symptom expression and resistance to Mirafiori lettuce big vein virus in Lactuca virosa L., and wild relative of cultivated lettuce. Euphytica, 164, 493–500.

    Google Scholar 

  127. Hayes, R. J., McHale, L. K., Vallad, G. E., Truco, M. J., Michelmore, R. W., Klosterman, S. J., et al. (2011b). The inheritance of resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae in the lettuce cultivar La Brillante. Theoretical and Applied Genetics, 123, 509–517.

    CAS  PubMed  Google Scholar 

  128. Hayes, R. J., Vallad, G. E., McHale, L. K., Truco, M. J., Ochoa, O. E., Michelmore, R. W., et al. (2009). Breeding for resistance-new approaches and challenges. Phytopathology, 99, S168.

  129. Hayes, R. J., Vallad, G. E., Qin, Q. M., Grube, R. C., & Subbarao, K. V. (2007a). Variation for resistance to Verticillium wilt in lettuce (Lactuca sativa L). Plant Disease, 91, 439–445.

    Google Scholar 

  130. Hayes, R. J., Vallad, G. E., & Subbarao, K. V. (2007b). The inheritance of resistance to race 1 isolates of Verticillium dahliae in lettuce. HortScience, 37, 1015–1022.

    Google Scholar 

  131. Hayes, R. J., Wintermantel, W. M., Nicely, P. A., & Ryder, E. J. (2006). Host resistance to mirafiori lettuce big-vein virus and lettuce big-vein associated virus and virus sequence diversity and frequency in California. Plant Disease, 90, 233–239.

    CAS  Google Scholar 

  132. Hayes, R. J., Wu, B. M., Pryor, B. M., Chitrampalam, P., & Subbarao, K. V. (2010). Assessment of resistance in lettuce (Lactuca sativa L.) to mycelial and ascospore infection by Sclerotinia minor Jagger and S. sclerotiorum (Lib.) de Bary. HortScience, 45, 333–341.

    Google Scholar 

  133. Hill, M., Witsenboer, H., Zabeau, M., Vos, P., Kesseli, R., & Michelmore, R. (1996). PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theoretical and Applied Genetics, 93, 1202–1210.

    Google Scholar 

  134. Hobbs, H. A., Black, L. L., Story, R. N., Valverde, R. A., Bond, W. P., Gatti, J. M., et al. (1993). Transmission of tomato spotted wilt virus from pepper and three weed hosts by Frankliniella fusca. Plant Disease, 77, 797–799.

    Google Scholar 

  135. Hooftman, D. A. P., Flavell, A. J., Jansen, H., den Nijs, H. C. M., Syed, N. H., Sørensen, A. P., et al. (2011). Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development. Evolutionary Applications, 4, 648–659.

    PubMed Central  Google Scholar 

  136. Hooftman, D. A. P., Hartman, Y., Oostermeijer, J. G. B., & den Nijs, J. C. M. (2009). Existence of vigorous lineages of crop-wild hybrids in lettuce under field conditions. Environmental Biosafety Research, 8, 203–217.

    PubMed  Google Scholar 

  137. Hu, J. G., Ochoa, O. E., Truco, M. J., & Vick, B. A. (2005). Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica, 144, 225–235.

    CAS  Google Scholar 

  138. Huang, J., McAuslane, H. J., & Nuessly, G. S. (2003). Resistance in lettuce to Diabrotica balteata (Coleoptera: Chrysomelidae): the roles of latex and inducible defense. Environmental Entomology, 32, 9–16.

    Google Scholar 

  139. Huang, X., & Ploeg, A. T. (2001). Effect of plant age and Longidorus africanus on the growth of lettuce and carrot. Journal of Nematology, 33, 2–3.

    Google Scholar 

  140. Hubbard, J. C., & Gerik, J. S. (1993). A new wilt disease of lettuce incited by Fusarium oxysporum f. sp. lactucum forma specialis nov. Plant Disease, 77, 750–754.

    Google Scholar 

  141. Iriondo, J. M., & De Hond, L. (2008). Crop wild relative in-situ management and monitoring: the time has come. In N. Maxted, B. V. Ford–Lloyd, S. P. Kell, J. M. Iriondo, E. Dulloo, & J. Turok (Eds.), Crop wild relative conservation and use (pp. 319–330). Wallingford: CABI.

    Google Scholar 

  142. Jagger, I. C. (1921). A transmissible mosaic disease of lettuce. Journal of Agricultural Research, 20, 737–741.

    Google Scholar 

  143. Jagger, I. C., & Chandler, N. (1934). Big vein, a disease of lettuce. Phytopathology, 24, 1253–1256.

    Google Scholar 

  144. Jeuken, M. (2012). Industry highlights. Breeding for durable resistance against an oomycete in lettuce. In G. Acquaah (Ed.), Principles of plant genetics and breeding. Second edition (chapter 14) (pp. 273–276). Chichester: Wiley-Blackwell.

    Google Scholar 

  145. Jeuken, M., & Lindhout, P. (2002). Lactuca saligna, a non-host for lettuce downy mildew (Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance. Theoretical and Applied Genetics, 105, 384–391.

    CAS  PubMed  Google Scholar 

  146. Jeuken, M., & Lindhout, P. (2004). The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theoretical and Applied Genetics, 109, 394–401.

    CAS  PubMed  Google Scholar 

  147. Jeuken, M. J. W., Pelgrom, K., Stam, P., & Lindhout, P. (2008). Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population. Theoretical and Applied Genetics, 116, 845–857.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Jeuken, M., van Wijk, R., Peleman, J., & Lindhout, P. (2001). An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa × L. saligna F-2 populations. Theoretical and Applied Genetics, 103, 638–647.

    CAS  Google Scholar 

  149. Jeuken, M. J. W., Zhang, N. W., McHale, L. K., Pelgrom, K., den Boer, E., Lindhout, P., et al. (2009). Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Plant Cell, 21, 3368–3378.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Johnson, W. C., Jackson, L. E., Ochoa, O., van Wijk, R., Peleman, J., St. Clarir, D. A., et al. (2000). Lettuce, a shallowrooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theoretical and Applied Genetics, 101, 1066–1073.

    CAS  Google Scholar 

  151. Jones, D. A., Dickinson, M. J., Balint-Kurti, P. J., Dixon, M. S., & Jones, J. D. G. (1993). Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5 and Cf-9 genes for resistance to Cladosporium fulvum. Molecular Plant-Microbe Interactions, 6, 348–357.

    CAS  Google Scholar 

  152. Judelson, H. S., & Michelmore, R. W. (1992). Temperature and genotype interactions in the expression of host resistance in lettuce downy mildew. Physiological and Molecular Plant Pathology, 40, 233–245.

    Google Scholar 

  153. Kanamoto, H., Yamashita, A., Asao, H., Okumura, S., Takase, H., Hattori, M., et al. (2006). Efficient and stable transformation of Lactuca sativa L. cv. ‘Cisco’ (lettuce) plastids. Transgenic Research, 15, 205–217.

    CAS  PubMed  Google Scholar 

  154. Kaur, P., & Mitkowski, N. A. (2010). Evaluation of Lactuca germplasm for resistance to the northern root-knot nematode (Meloidogyne hapla Chitwood). International Journal of Vegetable Science, 17, 26–36.

    Google Scholar 

  155. Kawazu, Y., Fujiyama, R., & Noguchi, Y. (2009). Transgenic resistance to Mirafiori lettuce virus in lettuce carrying inverted repeats of the viral coat protein gene. Transgenic Research, 18, 113–120.

    CAS  Google Scholar 

  156. Kawazu, Y., Fujiyama, R., Noguchi, Y., Kjubota, M., Ito, H., & Fukuoka, H. (2010). Detailed characterization of Mirafiori lettuce virus-resistant transgenic lettuce. Transgenic Research, 19, 211–220.

    CAS  PubMed  Google Scholar 

  157. Kesseli, R., Ochoa, O., & Michelmore, R. (1991). Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce (L. sativa). Genome, 34, 430–436.

    Google Scholar 

  158. Kesseli, R. V., Paran, I., & Michelmore, R. W. (1994). Analysis of a detailed genetic linkage map of Lactuca sativa (Lettuce) constructed from RFLP and RAPD markers. Genetics, 136, 1435–1446.

    CAS  PubMed  Google Scholar 

  159. Kim, K. H., Kim, Y. H., & Lee, K. R. (2007). Isolation of quinic acid derivatives and flavonoids from the aerial parts of Lactuca indica L. and their hepatoprotective activity in vitro. Bioorganic and Medicinal Chemistry Letters, 17, 6739–6743.

    CAS  PubMed  Google Scholar 

  160. Kisiel, W., & Barszcz, B. (1998). A germacrolide glucoside from Lactuca tatarica. Phytochemistry, 48, 205–206.

    CAS  Google Scholar 

  161. Kisiel, W., & Michalska, K. (2009). Lignans ansd sesquiterpenoids from Lactuca sibirica. Fitoterapia, 79, 241–244.

    Google Scholar 

  162. Kisiel, W., & Zielinska, K. (2000). Sesquiterpenoids and phenolics from Lactuca perennis. Fitoterapia, 71, 86–87.

    CAS  PubMed  Google Scholar 

  163. Kitner, M., Lebeda, A., Doležalová, I., Maras, M., Křístková, E., Nevo, E., et al. (2008). AFLP analysis of Lactuca saligna germplasm collections from four European and three Middle Eastern countries. Israel Journal of Plant Sciences, 56, 185–193.

    CAS  Google Scholar 

  164. Klocke, E., Nothnagel, T., & Schumann, G. (2010). Vegetables. In F. Kempken & C. Jung (Eds.), Genetic modification of plants, agriculture, horticulture and forestry (pp. 449–552). Berlin: Springer.

    Google Scholar 

  165. Koenning, S. R., Overstreet, C., Noling, J. W., Donald, P. A., Becker, J. O., & Fortnum, B. A. (1999). Survey of crop losses in response to Phytoparasitic Nematodes in the United States for 1994. Supplement to the Journal of Nematology, 31, 587–618.

    CAS  Google Scholar 

  166. Kohl, L. M. (2011). Astronauts of the Nematode World: An Aerial View of Foliar Nematode Biology, Epidemiology, and Host Range. APSnet Features. doi:10.1094/APSnetFeature-2011-0111.

    Google Scholar 

  167. Koopman, W. J. M. (1999). Plant systematics as useful tool for plant breeders, examples from lettuce. In A. Lebeda & E. Křístková (Eds.), Eucarpia leafy vegetables ′99, proceedings of the eucarpia meeting on leafy vegetables genetics and breeding (pp. 95–105). Olomouc: Palacký University in Olomouc.

    Google Scholar 

  168. Koopman, W. J. M. (2000). Identifying lettuce species (Lactuca subs. Lactuca, Asteraceae). A practical application of flow cytometry. Euphytica, 116, 151–159.

    Google Scholar 

  169. Koopman, W. J. M. (2002). Zooming in on the lettuce genome: Species relationships in Lactuca s.l. inferred from chromosomal and molecular characters. Ph.D. diss., Wageningen University, The Netherlands.

  170. Koopman, W. J. M., & de Jong, H. J. (1996). A numerical analysis of karyotypes and DNA amounts in lettuce cultivars and species (Lactuca subs. Lactuca, Compositae). Acta Botanica Neerlandica, 45, 211–222.

    Google Scholar 

  171. Koopman, W. J. M., Guetta, E., Van de Wiel, C. C. M., Vosman, B., & Van den Berg, R. G. (1998). Phylogenetic relationships among Lactuca (Asteraceae) species and related genera based on ITS-1 DNA sequences. American Journal of Botany, 85, 1517–1530.

    CAS  PubMed  Google Scholar 

  172. Koopman, W. J. M., Zevenbergen, M. J., & Van den Berg, R. G. (2001). Species relationships in Lactuca s.l. (Lactuceae, Asteraceae) inferred from AFLP fingerprints. American Journal of Botany, 88, 1881–1887.

    CAS  PubMed  Google Scholar 

  173. Krause-Sakate, R., Le Gall, O., Fakhfakh, H., Peypelut, M., Marrakchi, M., Varveri, C., et al. (2002). Molecular and biological characterization of Lettuce mosaic virus (LMV) isolates reveals a distanct and widespread type of resistance-breaking isolate: LMV-Most. Phytopathology, 92, 563–572.

    CAS  PubMed  Google Scholar 

  174. Krause-Sakate, R., Mello, N. R., Pavan, A. M., Zambolim, M. E., Carvalho, G. M., Le Gall, O., et al. (2001). Molecular characterization of two brazilian isolates of Lettuce mosaic virus with distinct biological properties. Phytopathologia Brasileira, 26, 153–157.

    CAS  Google Scholar 

  175. Křístková, E., Lebeda, A., & Doležalová I. (2007a). Phenotypic variability of Lactuca saligna germplasm collected in Italy and France. In EUCARPIA Leafy Vegetables 2007, Conference Abstracts (p. 15). Warwick: University of Warwick.

  176. Křístková, E., Lebeda, A., Doležalová, I., Vinter, V., & Křístková, A. (2007b). Variation in developmental stages of Lactuca serriola L. (prickly lettuce) germplasm from different European countries. In EUCARPIA Leafy Vegetables 2007, Conference Abstracts (p. 16). Warwick: University of Warwick.

  177. Křístková, E., Lebeda, A., Kitner, M., Vafková, B., Matoušková, Z., Doležalová, I., et al. (2012). Phenotypes of the natural interspecific hybrids in the genus Lactuca. Úroda, 60, 28–31.

    Google Scholar 

  178. Křístková, E., Tvardková, M., & Lebeda, A. (2011). Characterization of developmental stages in Lactuca saligna germplasm from Europe and USA. In Eucarpia Leafy Vegetables 2011. Abstract (p.78). Villneuve d’ Ascq: Université Lille Nord de France.

  179. Kuang, H., Ochoa, O. E., Nevo, E., & Michelmore, R. W. (2006). The disease resistance gene Dm3 is infrequent in natural populations of Lactuca serriola due to deletions and frequent gene conversions at the RGC2 locus. Plant Journal, 47, 38–48.

    CAS  PubMed  Google Scholar 

  180. Kuang, H., van Eck, H. J., Sicard, D., Michelmore, R., & Nevo, E. (2008). Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster. Genetics, 178, 1547–1558.

    CAS  PubMed  Google Scholar 

  181. Kumar, S., Ray, J., Davison, E. M., Cunnington, J. H., & de Alwis, S. (2007). First record of Pythium tracheiphilum associated with lettuce wilt and leaf blight in Australia. Australasian Plant Disease Notes, 2, 7–9.

    Google Scholar 

  182. Kwon, S. J., Truco, M. J., & Hu, J. G. (2012). LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting. Molecular Breeding, 29, 887–901.

    Google Scholar 

  183. Lebeda, A. (1984). Race-specific factors of resistance to Bremia lactucae in the world assortment of lettuce. Scientia Horticulturae, 22, 23–32.

    Google Scholar 

  184. Lebeda, A. (1985a). Differences in resistance of wild Lactuca species to natural infection of lettuce powdery mildew (Erysiphe cichoracearum). Euphytica, 34, 521–523.

    Google Scholar 

  185. Lebeda, A. (1985b). Susceptibility of some lettuce cultivars to natural infection by powdery mildew. Tests of Agrochemicals and Cultivars No. 6 (Annals of Applied Biology 106, Suppl.), 158–159.

  186. Lebeda, A. (1985c). Auftreten der Natürlichen Infektion durch den Echten Mehltau (Erysiphe cichoracearum) bei der Gattung Lactuca in der Tschechoslowakei. Acta Phytopathologica Academiae Scientarum Hungaricae, 20, 149–162.

    Google Scholar 

  187. Lebeda, A. (1986). Specificity of interactions between wild Lactuca spp. and Bremia lactucae isolates from Lactuca serriola. Journal of Phytopathology, 117, 54–64.

    Google Scholar 

  188. Lebeda, A. (1990). The location of sources of field resistance to Bremia lactucae in wild Lactuca species. Plant Breeding, 105, 75–77.

    Google Scholar 

  189. Lebeda, A. (1994). Evaluation of wild Lactuca species for resistance of natural infection of powdery mildew (Erysiphe cichoracearum). Genetic Resources and Crop Evolution, 41, 55–57.

    Google Scholar 

  190. Lebeda, A., & Astley, D. (1999). World genetic resources of Lactuca spp., their taxonomy and biodiversity, In A. Lebeda, & E. Křístková (Eds.), Eucarpia Leafy Vegetables99, Proceedings of the Eucarpia Meeting on Leafy Vegetables Genetics and Breeding. (pp. 81–94). Olomouc: Palacký University in Olomouc.

  191. Lebeda, A., & Blok, I. (1991). Race-specific resistance genes to Bremia lactucae in new Czechoslovak lettuce cultivars and location of resistance in a Lactuca serriola × Lactuca sativa hybrid. Archiv für Phytopathologie und Pflanzenschutz, 27, 65–72.

    Google Scholar 

  192. Lebeda, A., & Boukema, I. W. (2001). Leafy vegetables genetic resources. In L. Maggioni, & O. Spellman (Eds.), Report of a Network Coordinating Group on Vegatables; Ad hoc meeting, 2627 May 2000, Vila Real, Portugal. (pp. 48–57). Rome: IPGRI.

  193. Lebeda, A., & Boukema, I. W. (2005). Ad Hoc meeting on leafy vegetables. In G. Thomas, D. Astley, I. Boukema, M. C. Daunay, A. Del Greco, M. J. Diez, W. van Dooijeweert, J. Keller, T. Kotlinska, A. Lebeda, E. Lipman, L. Maggioni, & E. Rosa (Eds.), Report of a Vegetables Network (pp. 82–94). Joint meeting with and ad hoc group on leafy vegetables, 22–24 May 2003. Skierniewice: International Plant Genetic Resources Institute.

    Google Scholar 

  194. Lebeda, A., Doležalová, I., & Astley, D. (2004a). Representation of wild Lactuca spp. (Asteraceae, Lactuceae) in world genebank collections. Genetic Resources and Crop Evolution, 51, 167–174.

    Google Scholar 

  195. Lebeda, A., Doležalová, I., Feráková, V., & Astley, D. (2004b). Geographical distribution of wild Lactuca spp. (Asteraceae, Lactuceae). Botanical Reviews, 70, 328–356.

    Google Scholar 

  196. Lebeda, A., Doležalová, I., Janeček, J. & Gasmanová, N. (2004c). Differences in relative DNA content od Lactuca serriola germplasm collected in Europe. In Summaries and Program, 17th International lettuce and leafy vegetable conference, 28–31 August 2004, Sandman Hotel, Montreal-Longueuil, Agriculture and Applied Food, Canada, Montreal, pp. 29–30.

  197. Lebeda, A., Doležalová, I., Kitner, M., Novotná, A., Šmachová, P., & Widrlechner, M. P. (2011). North American continent-a new source of wild Lactuca spp. germplasm variability for future lettuce breeding. Acta Horticulturae, 918, 475–482.

    Google Scholar 

  198. Lebeda, A., Doležalová, I., Křístková, E., Dehmer, K. J., Astley, D., van de Wiel, C. C. M., et al. (2007a). Acquisition and ecological characterization of Lactuca serriola L. germplasm collected in the Czech Republic, Germany, the Netherlands and United Kingdom. Genetic Resources and Crop Evolution, 54, 555–562.

    Google Scholar 

  199. Lebeda, A., Doležalová, I., Křístková, E., Kitner, M., Petrželová, I., Mieslerová, B., et al. (2009a). Wild Lactuca germplasm for lettuce breeding: recent status, gaps and challenges. Euphytica, 170, 15–34.

    Google Scholar 

  200. Lebeda, A., Doležalová, I., Křístková, E., & Mieslerová, B. (2001b). Biodiversity and ecogeography of wild Lactuca spp. in some European countries. Genetic Resources and Crop Evolution, 48, 153–164.

    Google Scholar 

  201. Lebeda, A., Doležalová, I., Křístková, E., Mieslerová, B., Kitner, M., Navrátilová, B., Duchoslav, M., Havránek, P., & Vondráková, D. (2007b). Germplasm collections of crop wild relatives – research, study and use on the Department of Botany, Palacký University in Olomouc (Czech Republic). In P. Hauptvogel, D. Benediková, R. Hauptvogel (Eds.), Plant Gentic Resources and their Exploitation in the Plant Breeding for Food and Agriculture, Book of abstracts, 18 th Eucarpia Genetic Resources Section Meeting. (pp. 94–95). Piešťany: NP print s.r.o. Piešťany.

  202. Lebeda, A., Doležalová, I., & Novotná, A. (2012a). Wild and weedy Lactuca species, their distribution, ecogeography and ecobiology in USA and Canada. Genetic Resources and Crop Evolution, 59, 1805–1822.

    Google Scholar 

  203. Lebeda, A., Kitner, M., Křístková, E., Doležalová, I., & Beharav, A. (2012b). Genetic polymorphism in Lactuca aculeata populations and occurrence of natural putative hybrids between L. aculeata and L. serriola. Biochemical Systematics and Ecology, 42, 113–123.

  204. Lebeda, A., Kitner, M., Dziechciarková, M., Doležalová, I., Křístková, E., & Lindhout, P. (2009b). An insight into the genetic polymorphism among European populations of Lactuca serriola assessed by AFLP. Biochemical Systematics and Ecology, 37, 597–608.

    CAS  Google Scholar 

  205. Lebeda, A., & Mieslerová, B. (2011). Taxonomy, distribution and biology of lettuce powdery mildew (Golovinomyces cichoracearum sensu stricto). Plant Pathology, 60, 400–415.

    Google Scholar 

  206. Lebeda A., Mieslerová, B., Petrželová, I., & Korbelová, P. (2013). Host specificity and virulence variation in populations of lettuce powdery mildew pathogen (Golovinomyces cichoracearum s. str.) from prickly lettuce (Lactuca serriola). Mycological Progress, 12, 533–545.

    Google Scholar 

  207. Lebeda, A., Mieslerová, B., Petrželová, I., Korbelová, P., & Česneková, E. (2012c). Patterns of virulence variation in the interaction between Lactuca spp. and lettuce powdery mildew (Golovinomyces cichoracearum). Fungal Ecology, 5, 670–682.

    Google Scholar 

  208. Lebeda, A., & Petrželová, I. (2004). Variation and distribution of virulence phenotypes of Bremia lactucae in natural populations of Lactuca serriola. Plant Pathology, 53, 316–324.

    Google Scholar 

  209. Lebeda, A., Petrželová, I., & Maryška, Z. (2008a). Structure and variation in the wild-plant pathosystem: Lactuca serriolaBremia lactucae. European Journal of Plant Pathology, 122, 127–146.

    Google Scholar 

  210. Lebeda, A., & Pink, D. A. C. (1998). Histological aspects of the response of wild Lactuca spp. and their hybrids, with L. sativa to lettuce downy mildew (Bremia lactucae). Plant Pathology, 47, 723–736.

    Google Scholar 

  211. Lebeda, A., Pink, D. A. C., & Astley, D. (2002). Aspects of the interactions between wild Lactuca spp. and related genera and lettuce downy mildew (Bremia lactucae). In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 85–117). Dordrecht: Kluwer.

    Google Scholar 

  212. Lebeda, A., Ryder, E. J., Grube, R., Doležalová, I., & Křístková, E. (2007c). Lettuce (Asteraceae; Lactuca spp.). In R. J. Singh (Ed.), Genetic resources, chromosome engineering, and crop improvement, Vol. 3, Vegetable crops (pp. 377–472). Boca Raton: CRC Press, Taylor and Francis Group.

    Google Scholar 

  213. Lebeda, A., Sedlářová, M., Lynn, J., & Pink, D. A. C. (2006). Phenotypic and histological expression of different genetic backgrounds in interactions between lettuce, wild Lactuca spp., L. sativa × L. serriola hybrids and Bremia lactucae. European Journal of Plant Pathology, 115, 431–441.

    Google Scholar 

  214. Lebeda, A., Sedlářová, M., Petřivalský, M., & Prokopová, J. (2008b). Diversity of defence mechanisms in plant-oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. European Journal of Plant Pathology, 122, 71–89.

    Google Scholar 

  215. Lebeda, A., & Zinkernagel, V. (2003a). Characterization of new highly virulent German isolates of Bremia lactucae and efficiency of resistance in wild Lactuca spp. germplasm. Journal of Phytopathology, 151, 274–282.

    Google Scholar 

  216. Lebeda, A., & Zinkernagel, V. (2003b). Evolution and distribution of virulence in the German population of Bremia lactucae. Plant Pathology, 52, 41–51.

    Google Scholar 

  217. Ligoxigakis, E. K., Vakalounakis, D. J., & Thanassoulopoulos, C. C. (2002). Weed hosts of Verticillium dahliae in Crete: susceptibility, symptomatoology and significance. Phytoparasitica, 30, 511–518.

    Google Scholar 

  218. Lindqvist, K. (1960). Cytogenetic studies in the Serriola group of Lactuca. Hereditas, 46, 75–151.

    Google Scholar 

  219. Liu, Z. B. (2004). Distribution and population development of Nasonovia ribisnigri (Homoptera: Aphididae) in iceberg lettuce. Journal of Economic Entomology, 97, 883–890.

    PubMed  Google Scholar 

  220. Liu, Y. B., & McCreight, J. D. (2006). Responses of Nasonovia ribisnigri (Homoptera: Aphididae) to susceptible and resistant lettuce. Journal of Economic Entomology, 99, 972–978.

    PubMed  Google Scholar 

  221. Lu, Q. Y., Baker, J., & Preston, C. (2007). The spread of resistence to acetolactate synthase inhibiting herbicides in a wind borne, self-pollinated weed species, Lactuca serriola L. Theoretical and Applied Genetics, 115, 443–450.

    CAS  PubMed  Google Scholar 

  222. MacGowan, J. B. (1982). Needle nematodes: Longidorus spp.. Nematology Circular No. 89. Florida Department of Agriculture and Consumer Services, Contribution No. 250.

  223. Machado, A. C. Z., & Inomoto, M. M. (2001). Host status of eighteen vegetable crops for Pratylenchus brachyurus. Nematropica, 31, 259–265.

    Google Scholar 

  224. Mackenzie, J. R., & Vernon, R. S. (1988). Sampling for distribution of the lettuce aphid, Nasonovia ribisnigri (Homoptera: Aphididae), in fields and within heads. Journal of the Entomological Society of British Columbia, 85, 10–14.

    Google Scholar 

  225. Maisonneuve, B. (2003). Lactuca virosa, a source of disease resistance genes in lettuce breeding: results and difficulties for gene introgression. In Th. J. L. van Hintum, A. Lebeda, D. Pink, & J.W. Schur (Eds.), Eucarpia Leafy Vegetables Conference (pp. 61–67). Noordwijkerhout, Netherlands, 19–23 May 2003.

  226. Maisonneuve, B., Bellec, Y., Souche, S., & Lot, H. (1999). New resistance against downy mildew and lettuce mosaic potyvirus in wild Lactuca spp. In A. Lebeda & E. Křístková (Eds.), Eucarpia leafy vegetables ′99 (pp. 191–197). Olomouc: Palacky University, Olomouc.

    Google Scholar 

  227. Maisonneuve, B., Chupeau, M. C., Bellec, Y., & Chupeau, Y. (1995). Sexual and somatic hybridization in the genus Lactuca. Euphytica, 85, 281–285.

    Google Scholar 

  228. Maisonneuve, B., Chovelon, V., & Lot, H. (1991). Inheritance of resistance to beet western yellows virus in Lactuca virosa L. HortScience, 26, 1543–1545.

    Google Scholar 

  229. Maluf, W. R., Azevedo, S. M., Gomes, L. A. A., & de Oliveira, A. C. B. (2002). Inheritance of resistance to the root-knot nematode Meloidogyne javanica in lettuce. Genetics and Molecular Research, 1, 64–71.

    PubMed  Google Scholar 

  230. Mani, A., Al Hinai, M. S., & Handoo, Z. A. (1997). Occurrence, population density, and distribution of root-lesion nematodes, Pratylenchus spp., in the Sultanate of Oman. Nematropica, 27, 209–219.

    Google Scholar 

  231. Martin, C., Schoen, L., Rufingier, C., & Pasteur, N. (1996). A contribution to the integrated pest management of the aphid Nasonovia ribisnigri in salad crops. Bulletin OILB-SROP, 19, 98–101.

    Google Scholar 

  232. Matheron, M. E., & Koike, S. T. (2003). First report of fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae in Arizona. Plant Disease, 87, 1265.

    Google Scholar 

  233. Matoba, H., Mizutani, T., Nagano, K., Hoshu, Y., & Uchiyama, H. (2007). Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization. Hereditas, 144, 235–243.

    PubMed  Google Scholar 

  234. Matsumoto, E. (1991). Interspecific somatic hybridization between lettuce (Lactuca sativa) and wild species L. virosa. Plant Cell Reports, 9, 531–534.

    CAS  PubMed  Google Scholar 

  235. Matsuura, K., Kanto, T., Uzuhashi, S., & Kakishima, M. (2010). Pythium wilt of lettuce caused by Pythium uncinulatum in Japan. Journal of General Plant Pathology, 76, 320–323.

    Google Scholar 

  236. Matta, A. (1965). Una malattia della lattuga prodotta da una nuova specie di Pythium. Phytopathologia Mediterranea, 4, 48–53.

    Google Scholar 

  237. Matuo, T., & Matahashi, S. (1967). On Fusarium oxysporum f. sp. lactucae causing root rot of lettuce. Transactions of Mycological Society of Japan, 32, 13–15.

    Google Scholar 

  238. Maxted, N., & Kell, S. P. (2008). Linking in-situ and ex-situ conservation with use of crop wild relatives. In N. Maxted, B. V. Ford–Lloyd, S. P. Kell, J. M. Iriondo, E. Dulloo, & J. Turok (Eds.), Crop wild relative conservation and use (pp. 450–470). Wallingford: CABI.

    Google Scholar 

  239. Maxted, N., Kell, S. P., & Ford-Lloyd, B. V. (2008). Crop wild relative conservation and use: establishing the context. In N. Maxted, B. V. Ford–Lloyd, S. P. Kell, J. M. Iriondo, E. Dulloo, & J. Turok (Eds.), Crop wild relative conservation and use (pp. 3–30). Wallingford: CABI.

    Google Scholar 

  240. Mazier, M., German-Retana, S., Flamain, F., Dubois, V., Botton, E., Sarnette, V., et al. (2003). A simple and efficient method for testing Lettuce mosaic virus resistence in in vitro cultivated lettuce. Journal of Virological Methods, 116, 123–131.

    Google Scholar 

  241. McCabe, M. S., Garratt, L. C., Schepers, F., Jordi, W., Stoopen, G. M., Davelaar, F., et al. (2001). Effects of P-SAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiology, 127, 505–516.

    CAS  PubMed Central  PubMed  Google Scholar 

  242. McCabe, M. S., Schepers, F., van der Arend, A., Mohapatra, U., de Laat, A. M. M., Power, J. B., et al. (1999). Increased stable inheritance of herbicide resistance in transgenic lettuce carrying a petE promoter-bar gene compared with a CaMV 35S-bar gene. Theoretical and Applied Genetics, 99, 587–592.

    CAS  PubMed  Google Scholar 

  243. McCreight, J. D. (2008). Potential sources of genetic resistance in Lactuca spp. the lettuce aphid Nasanovia ribisnigri (Mosely) (Homoptera: Aphididae). Hortscience, 43, 1355–1358.

    Google Scholar 

  244. McCreight, J. D., & Liu, Y. B. (2012). Resistance to lettuce aphid (Nasonovia ribisnigri) biotype 0 in wild lettuce accessions PI 491093 and PI 274378. Hortscience, 47, 179–184.

    Google Scholar 

  245. McDougall, S., & Troldahl, R. (2010). Current lettuce aphid resistant varieties available in Australia. NSW Department of Primary Industries. <http://www.dpi.nsw.gov.au/agriculture/horticulture/vegetables/diseases/currant-lettuce-aphid/resistant>[last accessed 2013-04-27]

  246. McGuire, P. E., Ryder, E. J., Michelmore, R. W., Clark, R. L., Antle, R., Emery, G., Hannan, R. M., Kesseli, R. V., Kurtz, E. A., Ochoa, O., Rubatzky, V. E., & Waycott, W. (1993). Genetic Resources of Lettuce and Lactuca species in California. An Assessment of the USDA and UC Collections and Recommendations for Long-term Security. Report No. 12. Davis: University of California, Genetic Resources Conservation Program.

  247. McHale, K. L., Truco, J. M., Kozik, A., Wroblewski, T., Ochoa, E. O., Lahre, A. K., et al. (2009). The genomic architecture of disease resistance in lettuce. Theoretical and Applied Genetics, 118, 565–580.

    CAS  PubMed  Google Scholar 

  248. Michalska, K., & Kisiel, W. (2009). Root constituents of Lactuca sibirica and a comparison of metabolite profiles of L. sibirica and L. tatarica. Acta Societatis Botanicorum Poloniae, 78, 25–27.

    CAS  Google Scholar 

  249. Michalska, K., & Kisiel, W. (2010). Sesquiterpene lactones from roots of Lactuca aculeata. Biochemical Systematics and Ecology, 38, 830–832.

    CAS  Google Scholar 

  250. Michalska, K., Stojakowska, A., Malarz, J., Doležalová, I., Lebeda, A., & Kisiel, W. (2009). Systematic implication of sesquiterpene lactones in Lactuca species. Biochemical Systematics and Ecology, 37, 174–179.

    CAS  Google Scholar 

  251. Michelmore, R. W. (2012). California leafy greens research program. <http://calgreens.org/control/uploads/Genetic_Variation_in_Lettuce.pdf> [last accessed 2013-02-01]

  252. Michelmore, R. W., & Eash, J. A. (1986). Lettuce. In Handbook of plant cell culture, vol. 4 (pp. 512–551). New York: Macmillan.

    Google Scholar 

  253. Michelmore, R. W., Ochoa, O. E., Truco, M. J., Grube, R., & Gates, R. (2005). Breeding crisphead lettuce. USDA-ARS. California Lettuce Research Board Annual Report (pp. 68–78), 2004–2005.

  254. Mikel, M. A. (2007). Genealogy of contemporary North American lettuce. HortScience, 42, 489–493.

    Google Scholar 

  255. Mikel, M. A. (2013). Genetic composition of contemporary proprietary U.S. lettuce (Lactuca sativa L.) cultivars. Genetic Resources and Crop Evolution, 60, 89–96.

    Google Scholar 

  256. Miller, N. J., Birley, A. J., Overall, A. D. J., & Tatchell, G. M. (2003). Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage. Heredity, 91(3), 217–223.

    Google Scholar 

  257. Miller, N. J., Kift, N. B., & Tatchell, G. M. (2008). Host-associated populations in the lettuce root aphid, Pemphigus bursarius (L.). Heredity, 94, 556–564.

    Google Scholar 

  258. Mizutani, T., Liu, X. J., Tashiro, Y., Miyazaki, S., & Shimazaki, K. (1989). Plant regeneration and cell fusion of protoplasts from lettuce cultivars and related wild species in Japan. Bulletin of Faculty of Agriculture, Saga University, 67, 109–118.

    Google Scholar 

  259. Mohapatra, U., McCabe, M. S., Power, J. B., Schepers, F., Van der Arend, A., & Davey, M. R. (1999). Expression of the bar gene confers herbicide resistance in transgenic lettuce. Transgenic Research, 8, 33–44.

    CAS  Google Scholar 

  260. Mojtahedi, H., Boydson, R. A., Thomas, P. E., Crosslin, J. M., Santo, G. S., Roga, E., et al. (2003). Weed hosts of Paratrichodorus allius and tobacco rattle virus in the Pacific Northwest. American Journal of potato Research, 80, 379–385.

    Google Scholar 

  261. Moretti, F., Cotroneo, A., & Mancini, G. (1981). The reproduction and pathology of Pratylenchus penetrans on some varieties of lettuce. Revue de Nématologie, 4, 271–276.

    Google Scholar 

  262. Mou, B. (2008). Lettuce. In J. Prohens & F. Nuez (Eds.), Handbook of plant breeding. Vegetables I. Asteraceae, brassicaceae, chenopodiaceae, and cucurbitaceae (pp. 75–116). New York: Springer Science.

    Google Scholar 

  263. Mou, B. (2011a). Green leaf lettuce breeding lines with resistance to corky root, 06–831 and 06–833. HortScience, 46, 1324–1325.

    Google Scholar 

  264. Mou, B. (2011b). Mutations in lettuce improvement. International Journal of Plant Genomics, Volume 2011, Article ID 723518, doi: 10.1155/2011/723518.

  265. Mou, B., & Bull, C. (2004). Screening lettuce germplasm for new sources of resistance to corky root. Journal of the American Society for Horticultural Science, 129, 712–718.

    Google Scholar 

  266. Mou, B., Hayes, R. J., & Ryder, E. J. (2007). Crisphead lettuce breeding lines with resistance to corky root and lettuce mosaic virus. HortScience, 42, 701–703.

    Google Scholar 

  267. Mou, B., & Liu, Y. (2003). Leafminer resistance in lettuce. Hortscience, 38, 570–572.

    Google Scholar 

  268. Mou, B., & Liu, Y. (2004). Host plant resistance to leafminers in lettuce. Journal of the American Society for Horticultural Science, 129, 383–388.

    Google Scholar 

  269. Mou, B., & Ryder, E. J. (2010). MU06-857, a green leaf lettuce breeding line with resistance to leafminer and lettuce mosaic virus. Hortscience, 45, 666–667.

    Google Scholar 

  270. Navarro, J. A., Torok, V. A., Vetten, H. J., & Pallás, V. (2005). Genetic variability in the coat protein genes of lettuce big-vein associated virus and Mirafiori lettuce big-vein virus. Archives for Virology, 150, 681–694.

    CAS  Google Scholar 

  271. Netzer, D., Globerson, D., Weintal, C., & Elyassi, R. (1985). Sources and inheritance of resistance to Stemphylium leaf spot of lettuce. Euphytica, 34, 393–396.

    Google Scholar 

  272. Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M. P., Mazier, M., Maisonneuve, B., et al. (2003). The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiology, 132, 1272–1282.

    CAS  PubMed Central  PubMed  Google Scholar 

  273. Novotná, A., Doležalová, I., Lebeda, A., Kršková, M., & Berka, T. (2011). Morphological variability of achenes of some European populations of Lactuca serriola L. Flora, 206, 473–483.

    Google Scholar 

  274. Obermeier, C., Sears, J. L., Liu, H. Y., Schlueter, K. O., Ryder, E. J., Duffus, J. E., et al. (2001). Characterization of distinct tombusviruses that cause disease of lettuce and tomato in the western United States. Phytopathology, 91, 797–806.

    CAS  PubMed  Google Scholar 

  275. Ochoa, O., Delp, B., & Michelmore, R. W. (1987). Resistance in Lactuca spp. to Microdochium panattoniana (lettuce anthracnose). Euphytica, 36, 609–614.

    Google Scholar 

  276. Okubara, P. A., Arroyo-Garcia, R., Shen, K. A., Mazier, M., Meyers, B. C., Ochoa, O. E., et al. (1997). A transgenic mutant of Lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance. Molecular Plant Microbe Interactions, 10, 970–977.

    CAS  PubMed  Google Scholar 

  277. Ökten, M. E. (1988). Some species of Tylenchidae (Tylenchida: Nematoda) from the Istanbul province. Türkiye Entomoloji Dergisi, 12, 209–214.

    Google Scholar 

  278. Parella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C., & Marchoux, G. (2003). An update of the host range of Tomato spotted wilt virus. Journal of Plant Pathology, 85, 227–264.

    Google Scholar 

  279. Pedroche, N. B., Villaneuva, L. M., & de Waele, D. (2012). Plant parasitic nematodes associated with semi-temperate vegetables in Benguet Province, Philippines. Archives of Phytopathology and Plant Protection, iFirst article 1–17.

  280. Peters, D., & Goldbach, R. (1998). An updated list of plant species susceptible to tospovirus. Wageningen Agricultural University, Section Virology, The Netherlands.

  281. Petrželová, I., & Lebeda, A. (2011). Distribution of race-specific resistance against Bremia lactucae in natural populations of Lactuca serriola. European Journal of Plant Pathology, 129, 233–253.

    Google Scholar 

  282. Petrželová, I., Lebeda, A., & Beharav, A. (2011). Resistance to Bremia lactucae in natural populations of Lactuca saligna from some Middle Eastern countries and France. Annals of Applied Biology, 159, 442–455.

    Google Scholar 

  283. Philis, J. (1995). An up-dated list of plant parasitic nematodes from Cyprus and their economic importance. Nematologia Mediterranea, 23, 307–314.

    Google Scholar 

  284. Pileggi, M., Mielniczki Pereira, A. A., dos Santos Silva, J., Veiga Pileggi, S. A., & Verma, D. P. S. (2001). An improved method for transformation of lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance. Brazilian Archives of Biology and Technology, 44, 191–196.

    CAS  Google Scholar 

  285. Pink, D. A. C. (2002). Strategies using genes for non-durable resistance. Euphytica, 124, 227–236.

    CAS  Google Scholar 

  286. Pink, D. A. C., & Keane, E. M. (1993). Lettuce: Lactuca sativa L. In G. Kalloo & B. O. Bergh (Eds.), Genetic improvement of vegetable crops (pp. 543–571). Oxford: Pergamon Press.

    Google Scholar 

  287. Pink, D. A. C., Kostova, D., & Walkey, D. G. A. (1992a). Differentiation of pathotypes of lettuce mosaic virus. Plant Pathology, 41, 5–12.

    Google Scholar 

  288. Pink, D. A. C., Lot, H., & Johnson, R. (1992b). Novel pathotypes of lettuce mosaic virus-breakdown of a durable resistance. Euphytica, 63, 169–174.

    Google Scholar 

  289. Pink, D. A. C., & Puddephat, I. J. (1999). Deployment of disease resistance genes by plant transformation – a “mix and match” approach. Trends in Plant Science, 4, 71–75.

    PubMed  Google Scholar 

  290. Pniewski, T. (2013). The twenty-year story of a plant-based vaccine against hepatitis B: stagnation or promising prospects? International Journal of Molecular Sciences, 14, 1978–1998.

    CAS  PubMed Central  PubMed  Google Scholar 

  291. Provvidenti, R., Robinson, R. W., & Shail, J. W. (1980). A source of resistance to a strain of cucumber mosaic virus in Lactuca saligna L. HortScience, 15, 528–529.

    Google Scholar 

  292. Purdy, L. H. (1979). Sclerotinia sclerotiorum: history, disease and symptomatology, host range, geographical distribution and impact. Phytopathology, 69, 875–880.

    Google Scholar 

  293. Radewald, J. D., Mowbray, P. G., Paulus, A. O., Shibuya, F., & Rible, J. M. (1969a). Preplant soil fumigation for California head lettuce. Plant Disease Reporter, 53, 385–389.

    Google Scholar 

  294. Radewald, J. D., Osgood, J. W., Mayberry, K. S., Paulus, A. O., & Shibuya, F. (1969b). Longidorus africanus a pathogen of head lettuce in the Imperial Valley of southern California. Plant Disease Reporter, 53, 381–384.

    Google Scholar 

  295. Radewald, J. D., Osgood, J. W., Mayberry, K. S., Paulus, A. O., Otto, H. W., & Shibuya, F. (1969c). Longidorus africanus merny; nematode found pathogen of imperial lettuce. California Agriculture, 23, 10–13.

    Google Scholar 

  296. Raid, R. N. (1997). Stemphylium leaf spot. In R. M. Davis, K. V. Subbarao, R. N. Raid, & E. A. Kurtz (Eds.), Compendium of lettuce diseases (pp. 25–26). St. Paul: APS Press.

    Google Scholar 

  297. Rauscher, G., & Simko, I. (2013). Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes. BMC Plant Biology, 13, 11.

    Google Scholar 

  298. Ray, D. T., McCreight, J. D., McGrady, J. J., & Brown, J. K. (1989). Resistance in cultivated and wild lettuce to lettuce infectious yellows virus. Vegetable Report, 78, 73–77.

    Google Scholar 

  299. Rees, S., & Harborne, J. (1984). Flavonoids and other phenolics of Cichorium and related members of the Lactuceae (Compositae). Botanical Journal of the Linnean Society, 89, 313–319.

    Google Scholar 

  300. Reinink, K. (1999). Lettuce resistance breeding. In A. Lebeda & E. Křístková (Eds.), Eucarpia leafy vegetables ′99. Proceedings of the eucarpia meeting on leafy vegetables genetics and breeding (pp. 139–147). Olomouc: Palacký University in Olomouc.

    Google Scholar 

  301. Reinink, K., & Dieleman, F. L. (1989). Comparison of sources of resistance to leaf aphids in lettuce (Lactuca sativa L.). Euphytica, 40, 21–29.

    Google Scholar 

  302. Revers, F., Lot, H., Souche, S., Le Gall, O., Candresse, T., & Dunez, J. (1997a). Biological and molecular variability of lettuce mosaic virus isolates. Phytopathology, 87, 397–403.

    CAS  PubMed  Google Scholar 

  303. Revers, F., Yang, S. J., Walter, J., Souche, S., Lot, H., Le Gall, O., et al. (1997b). Comparison of the complete nucleotide sequences of two isolates of lettuce mosaic virus differing in their biological properties. Virus Research, 47, 167–177.

    CAS  PubMed  Google Scholar 

  304. Riar, D. S., Rustgi, S., Burke, I. C., Gill, K. S., & Yenish, J. P. (2011). EST-SSR development from 5 Lactuca species and their use in studying genetic diversity among L. serriola biotypes. Journal of Heredity, 102, 17–28.

    CAS  PubMed  Google Scholar 

  305. Rich, J., Brito, J., Ferrell, J., & Kaur, R. (2010). Weed hosts of root-knot nematodes common to Florida. University of Florida, IFAS, ENY-060 <http://edis.ifas.ufl.edu/pdffiles/IN/IN84600.pdf>. [last accessed 2013-02-01]

  306. Roggero, P., Ciuffo, M., Vaira, A. M., Accotto, G. P., Masenka, V., & Milne, R. G. (2000). An Ophiovirus isolated from lettuce with big-vein symptoms. Archives of Virology, 145, 2629–2642.

    CAS  PubMed  Google Scholar 

  307. Roossinck, M. J. (2002). Evolutionary history of Cucumber mosaic virus deduced by phylogenetic analyses. Journal of Virology, 76, 3382–3387.

    CAS  PubMed Central  PubMed  Google Scholar 

  308. Roossinck, M. J., Bujarski, J., Ding, S. W., Hajimorad, R., Hanada, K., Scott, S., & Tousignant, M. (1999). Family Bromoviridae. In M. H. V. van Regenmortel, C. M. Fauquet, & D. H. L. Bishop (Eds.), Virus Taxonomy (pp. 923–935). Seventh Report of the International Committee on Taxonomy of Viruses. San Diego, California: Academic Press.

  309. Ryder, E. J. (1970). Inheritance of resistance to common lettuce mosaic. Journal of the American Society of Horticultural Science, 95, 378–379.

    Google Scholar 

  310. Ryder, E. J. (1999). Lettuce, endive and cichory. Wallingford: CABI Publishing.

    Google Scholar 

  311. Ryder, E. J. (2001). Current and future issues in lettuce breeding. In J. Janick (Ed.), Plant breeding reviews (Vol. 20, pp. 105–134). San Francisco: Willey.

    Google Scholar 

  312. Ryder, E. (2002). A mild systemic reaction to lettuce mosaic virus in lettuce: inheritance and interaction with an allele for resistance. Journal of the American Society of Horticultural Science, 127, 814–818.

    Google Scholar 

  313. Ryder, E. J., Grube, R. C., Subbarao, K. V., & Koike S. T. (2003). Breeding for resistance to diseases in lettuce: successes and challenges. In Th.J.L. van Hintum, A. Lebeda, D. A. Pink, J. W. Schut (Eds.), Eucarpia Leafy Vegetables 2003, Proceedings of the Eucarpia Meeting on Leafy Vegetables Genetics and Breeding (pp. 25–30). Wageningen, The Netherlands: Centre for Genetic Resources (CGN).

  314. Ryder, E. J., & Robinson, B. J. (1995). Big-vein resistance in lettuce – identifying, selecting, and testing resistant cultivars and breeding. Journal of the American Society for Horticultural Science, 120, 741–746.

    Google Scholar 

  315. Sahin, F., & Miller, S. A. (1997). Identification of the bacterial leaf spot pathogen of lettuce, Xanthomonas campestris pv. vitians, in Ohio, and assessment of cultivar resistance and seed treatment. Plant Disease, 81, 1443–1446.

    Google Scholar 

  316. Sangün, O., & Satar, S. (2012). Aphids (Hemiptera: Aphididae) on lettuce in the Eastern Mediterranean Region of Turkey: incidence, population fluctuations, and flight activities. Turkiye Entomoloji Dergisi - Turkish Journal of Entomology, 36, 443–454.

    Google Scholar 

  317. Sauer, C. (2008). Salatanbau-noch kein genereller Durchbruch der Nasonovia-Resistenz. Auszug aus Gemusebau-Info 10/2008. - Agroscope Changins-Wädenswil ACW. <http://www.agroscope.admin.ch/publikationen/einzelpublikation/index.html?aid=824&lang=fr&pid=9386> [last accessed 2013-04-27]

  318. Schwember, A. R., & Bradford, K. J. (2010). Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. Journal of Experimental Botany, 61, 4423–4436.

    CAS  PubMed  Google Scholar 

  319. Scott, J. C., Kirkpatrick, S. C., & Gordon, T. R. (2010). Variation in susceptibility of lettuce cultivars to fusarium wilt caused by Fusarium oxysporum f.sp. lactucae. Plant Pathology, 59, 139–146.

    Google Scholar 

  320. Sequiera, L. (1970). Resistance to corky root rot in lettuce. Plant Disease Reports, 54, 754–758.

    Google Scholar 

  321. Sequiera, L. (1978). Two root rot resistant varieties of head lettuce. Ohio Agricultural Experimental Research Station Bulletin, 359, 197–214.

    Google Scholar 

  322. Sessa, R., Bennett, M. H., Lewin, M. J., Mansfield, J. W., & Beale, M. H. (2000). Metabolite profiling of sesquiterpene lactones from Lactuca species. Journal of Biological Chemistry, 275, 26877–26884.

    CAS  PubMed  Google Scholar 

  323. Shin, H. D., Jee, H. J., & Shin, C. K. (2006). First report of powdery mildew caused by Sphaerotheca fusca on Lactuca sativa in Korea. Plant Pathology, 55, 814.

    Google Scholar 

  324. Shukla, D. D., Ward, C. W., & Brunt, A. A. (1994). The potyviridae. Wallingford: CAB International.

    Google Scholar 

  325. Sicard, D., Woo, S. S., Arroyo-Garcia, R., Ocho, O., Nguyen, D., Korol, A., et al. (1999). Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp. Theoretical and Applied Genetics, 99, 405–418.

    CAS  PubMed  Google Scholar 

  326. Sikora, R. A., & Fernández, E. (2005). Nematode parasites of vegetables. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (2nd ed., pp. 319–392). Wallingford: CABI Publishing.

    Google Scholar 

  327. Simko, I. (2009). Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). Journal of Heredity, 100, 256–262.

    CAS  PubMed  Google Scholar 

  328. Simko, I., Hayes, R. J., Truco, M. J., & Michelmore, R. W. (2011). Mapping a dominant negative mutation for triforine sensitivity in lettuce and its use as a selectable marker for detecting hybrids. Euphytica, 182, 157–166.

    Google Scholar 

  329. Simko, I., & Hu, J. (2008). Population structure in cultivated lettuce and its impact on association mapping. Journal of the American Society for Horticultural Science, 133, 61–68.

    Google Scholar 

  330. Simko, I., Pechenick, D. A., McHale, L. K., Truco, M. J., Ochoa, O. E., Michelmore, R. W., et al. (2009). Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr1. BMC Plant Biology, 9, 135.

    PubMed Central  PubMed  Google Scholar 

  331. Simko, I., Pechenick, D. A., McHale, L. K., Truco, M. J., Ochoa, O. E., Michelmore, R. W., et al. (2010). Development of molecular markers for marker-assisted selection of dieback resistance in lettuce (L. sativa. Acta Horticulturae (ISHS), 859, 401–408.

    CAS  Google Scholar 

  332. Sretenović-Rajičić, T., van Hintum, T. J. L., Lebeda, A., & Dehmer, K. (2008). Analysis of wild Lactuca accessions: conservation and identification of redundancy. Plant Genetic Resources: Characterization and Utilization, 6, 153–163.

    Google Scholar 

  333. Stebbins, G. L. (1957). Self-fertilization and population variability in the higher plants. American Naturalist, 91, 418–428.

    Google Scholar 

  334. Stevens, M., Freeman, B., Liu, H., Herrbach, E., & Lemaire, O. (2005). Beet poleroviruses: close friends or distant relatives? Molecular Plant Pathology, 6, 1–9.

    CAS  PubMed  Google Scholar 

  335. Stoetzel, M. B. (1985). Eucarazzia elegans (Ferrari) an aphid new to the Western hemisphere, with archival data (Homoptera: Aphididae). Proceedings of the Entomological Society of Washington, 87, 44–48.

    Google Scholar 

  336. Stoffel, K., van Leeuwen, H., Kozik, A., Caldwell, D., Ashrafi, H., Cui, X., et al. (2012). Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.). BMC Genomics, 13, 185.

    CAS  PubMed Central  PubMed  Google Scholar 

  337. Stubbs, L. L., & Grogan, R. G. (1963). Necrotic yellows: a newly recognised virus disease of lettuce. Australian Journal of Agricultural Research, 14, 439–459.

    Google Scholar 

  338. Subbarao, K. V. (1998). Progress towards integrated management of lettuce drop. Plant Disease, 80, 28–33.

    Google Scholar 

  339. Subbarao, K. V., Hubbard, J. C., Greathead, A., & Spencer, G. A. (1997). Verticillium wilt. In R. M. Davis, K. V. Subbarao, R. N. Raid, & E. A. Kurtz (Eds.), Compendium of lettuce diseases (pp. 26–27). St. Paul: American Phytopathological Society.

    Google Scholar 

  340. Syed, H. N., Sørensen, P. A., Antonise, R., van de Wiel, C., van der Linden, G. C., van ‘t Westende, W., et al. (2006). A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theoretical and Applied Genetics, 112, 517–527.

    CAS  PubMed  Google Scholar 

  341. Takada, K., Watanabe, S., Sano, T., Ma, B., Kamada, H., & Ezura, H. (2007). Heterologous expression of the mutated melon ethylene receptor gene Cm-ERS1/H70A produces stable sterility in transgenic lettuce (Lactuca sativa). Journal of Plant Physiology, 164, 514–520.

    CAS  PubMed  Google Scholar 

  342. Tamaki, H., Robinson, R. W., Anderson, J. L., & Stoewsand, G. S. (1995). Sesquiterpene lactones in virus-resistant lettuce. Journal of Agricultural and Food Chemistry, 43, 6–8.

    CAS  Google Scholar 

  343. Thabuis, A. P. P., Teekens, K. C., & van Herwijnen, Z. O. (2011). Lettuce that is resistant to the lettuce aphid Nasonovia ribisnigri biotype 1. World Intellectual Property Organization. PCT/EP2010/067588.

  344. Thompson, R. C., & Ryder, E. J. (1961). Descriptions and pedigrees of nine varieties of lettuce. U.S. Department of Agriculture Technical Bulletin, 1244.

  345. Torres, A. C., Nagata, R. T., Ferl, R. J., Bewick, T. A., & Cantliffe, D. J. (1999). In vitro assay selection of glyphosate resistance in lettuce. Journal of the American Society for Horticultural Science, 124, 86–89.

    CAS  Google Scholar 

  346. Tortolero, O., & Sequeira, L. (1978). A vascular wilt and leaf blight disease of lettuce in Wisconsin caused by a new strain of Pythium tracheiphilum. Plant Disease Reporter, 62, 616–620.

    Google Scholar 

  347. Toussaint, V., Benoit, D. L., & Carisse, O. (2012). Potential of weed species to serve as a reservoir for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Crop Protection, 41, 64–70.

    Google Scholar 

  348. Truco, M. J., Antonise, R., Lavelle, D., Ochoa, O., Kozik, A., Witsenboer, H., et al. (2007). A high-density integrated genetic linkage map of lettuce (Lactuca spp.). Theoretical and Applied Genetics, 115, 735–746.

    CAS  PubMed  Google Scholar 

  349. Truco, M. J., Ashrafi, H., Kozik, A., van Leeuwen, H., Bowers, J., Chin Wo, S.R., Stoffel, K., Xu, H., Hill, T., Van Deynze, A., & Michelmore, R. (2013). An ultra high-density, transcript-based, genetic map of lettuce. G3: Genes, Genomes and Genetics (submitted)

  350. Tsuchiya, N., Fujinaga, M., Ogiso, H., Usui, T., & Tsukada, M. (2004). Resistance tests and genetic resources for breeding fusarium root rot resistant lettuce. Journal of Japanese Society of Horticultural Science, 73, 105–113.

    Google Scholar 

  351. Usami, T., Itoh, M., Morii, S., Miyamoto, T., Kaneda, M., Ogawara, T., et al. (2012). Involvment of two different types of Verticillium dahliae in lettuce wilt in Ibaraki Prefecture, Japan. Journal of General Plant Pathology, 78, 348–352.

    Google Scholar 

  352. Uwimana, B., d’Andrea, L. D., Felber, F., Hooftman, D. A., den Nijs, H. C. M., Smulders, M. J. M., et al. (2012a). A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (Lactuca sativa L.) and prickly lettuce (L. serriola L.) and the recent expansion of L. serriola in Europe. Molecular Ecology, 21, 2640–2654.

    PubMed  Google Scholar 

  353. Uwimana, B., Smulders, M. J., Hooftman, D. A., Hartman, Y., van Tienderen, P. H., Jansen, J., et al. (2012b). Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations. BMC Plant Biology, 12, 43.

    PubMed Central  PubMed  Google Scholar 

  354. Uwimana, B., Smulders, M. J., Hooftman, D. A., Hartman, Y., van Tienderen, P. H., Jansen, J., et al. (2012c). Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop-wild hybrids under drought, salinity and nutrient deficiency conditions. Theoretical and Applied Genetics, 125, 1097–1111.

    CAS  PubMed Central  PubMed  Google Scholar 

  355. van Bruggen, A. H. C. (1997). Corky root. In R. M. Davis, K. V. Subbarao, R. N. Raid, & E. A. Kurtz (Eds.), Compendium of lettuce diseases (pp. 28–29). St. Paul: APS Press.

    Google Scholar 

  356. van der Arend, A. J. M., Ester, A., & Schijndel, J. T. V. (1999). Developing an aphid-resistant butterhead lettuce “Dynamite”. In A. Lebeda & E. Křístková (Eds.), EUCARPIA leafy vegetables′99 (pp. 149–157). Olomouc: Palacky University in Olomouc.

    Google Scholar 

  357. van de Wiel, C., Arens, P., & Vosman, B. (1998). Microsatellite fingerprinting in lettuce (Lactuca sativa L.) and wild relatives. Plant Cell Reports, 17, 837–842.

    Google Scholar 

  358. van de Wiel, C., Arens, P., & Vosman, B. (1999). Microsatellite retrieval in lettuce (Lactuca sativa L.). Genome, 42, 139–149.

    PubMed  Google Scholar 

  359. van de Wiel, C. C. M., Sretenović-Rajičić, T., van Treuren, R., Dehmer, K. J., van der Linden, C. G., & van Hintum, T. J. L. (2010). Distribution of genetic diversity in wild European populations of prickly lettuce (Lactuca serriola): implications for plant genetic resources management. Plant Genetic Resources: Characterization and Utilization, 8, 171–181.

    Google Scholar 

  360. van Hintum, T. J. L. (2003). Molecular characterisation of a lettuce germplasm collection. In T. J. L. van Hintum, A. Lebeda, D. A. Pink, & J. W. Schut (Eds.), Eucarpia leafy vegetables 2003, proceedings of the eucarpia meeting on leafy vegetables genetics and breeding (pp. 19–21). Wageningen: Centre for Genetic Resources (CGN).

    Google Scholar 

  361. van Hintum, Th. J. L. & Boukema, I. W. (1999). Genetic resources of leafy vegetables. In A. Lebeda, & E. Křístková (Eds.), Eucarpia Leafy Vegetables99, Proceedings of the Eucarpia Meeting on Leafy Vegetables Genetics and Breeding. (pp. 59–72). Olomouc: Palacký University in Olomouc.

  362. van Leeuwen, H., Stoffel, K., Kozik, A., Cui, X., Ashrafi, H., McHale, L., Lavelle, D., Wong, G., Chen, F., Truco, M. J., Van Deynze, A., & Michelmore, R. W. (2009). High-density mapping of the lettuce genome with SFP markers in over 15,000 unigenes. Plant and Animal Genome Conference XVII, San Diego, USA.

  363. van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. M., et al. (2000). Virus taxonomy: classification and nomenclature of viruses (7th report ICTV). San Diego: Academic.

    Google Scholar 

  364. van Treuren, R., van der Arend, A. J. M., & Schut, J. W. (2013). Distribution of downy mildew (Bremia lactucae Regel) resistances in a genebank collection of lettuce and its wild relatives. Plant Genetic Resources: Characterization and Utilization, 11, 15–25.

    Google Scholar 

  365. van Treuren, R., & van Hintum, T. J. L. (2009). Comparison of anonymous and targeted molecular markers for the estimation of genetic diversity in ex situ conserved Lactuca. Theoretical and Applied Genetics, 119, 1265–1279.

    PubMed Central  PubMed  Google Scholar 

  366. van Treuren, R., Coquin, P., & Lohwasser, U. (2011). Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb’s lettuce, rhubarb and rocket salad): composition and gaps. Genetic Resources and Crop Evolution, 59, 981–997.

    Google Scholar 

  367. Vanstone, V. A., & Russ, M. H. (2001). Ability of weeds to host the root lesion nematodes Pratylenchus neglectus and P. thornei II*. Broad-leaf weeds. Australasian Plant Pathology, 30, 251–258.

    Google Scholar 

  368. Vermeulen, A., Desprez, B., Lancelin, D., & Bannerot, H. (1994). Relationships among Cichorium species and related genera as determined by analysis of mitochondrial RFLPs. Theoretical and Applied Genetics, 88, 159–166.

    CAS  PubMed  Google Scholar 

  369. Viane, N. M., & Abawi, G. S. (1996). Damage threshold of Meloidogyne hapla to lettuce in organic soil. Journal of Nematology, 28, 537–545.

    Google Scholar 

  370. Walkey, D. (1991). Applied plant virology (2nd ed.). London: Chapman and Hall.

    Google Scholar 

  371. Waycott, W., Fort, S. B., Ryder, E. J., & Michelmore, R. W. (1999). Mapping morphological genes relative to molecular markers in lettuce (Lactuca sativa L.). Heredity, 82, 245–251.

    CAS  PubMed  Google Scholar 

  372. Wesolowska, A., Nikiforuk, A., Michalska, K., Kisiel, W., & Chojnacka-Wójcik, E. (2006). Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. Journal of Ethnofarmacology, 107, 254–258.

    CAS  Google Scholar 

  373. Wetzel, T., Dietzgen, R. G., & Dale, J. L. (1994). Genomic organization of lettuce necrotic yellows rhabdovirus. Virology, 200, 401–412.

    CAS  PubMed  Google Scholar 

  374. Whipps, J. M., Budge, S. P., McClement, S., & Pink, D. A. C. (2002). A glasshouse cropping method for screening lettuce lines for resistance to Sclerotinia sclerotiorum. European Journal of Plant Pathology, 108, 373–378.

    Google Scholar 

  375. Whitaker, T. W., Bohn, G. W., Welch, J. F., & Grogan, R. G. (1958). History and development of head lettuce resistant to downy mildew. Proceedings of the American Society for Horticultural Science, 72, 410–416.

    Google Scholar 

  376. Wintermantel, W. M. (2004). Emergence of greenhouse whitefly (Trialeurodes vaporariorum) transmitted Criniviruses as threats to vegetable and fruit producion in North America. APSnet Features. Online. doi:10.1094/APSnetFeature-2004-0604.

    Google Scholar 

  377. Wintermantel, W. M., & Anchieta, A. G. (2012). The genome sequence of lettuce necrotic stunt virus indicates a close relationship to Moroccan pepper virus. Archiv of Virology, 157, 1407–1409.

    CAS  Google Scholar 

  378. Wintermantel, W. M., Anchieta, A. G., Obermeier, C., & Wisler, G. C. (2003). Tombusvirus infection of lettuce is influenced by soil enviroment. Phytopathology, 93, 101.

    Google Scholar 

  379. Witsenboer, H., Michelmore, R. W., & Vogel, J. (1997). Identification, genetic localization and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome, 40, 923–936.

    CAS  PubMed  Google Scholar 

  380. Yabuuchi, E., Kosako, Y., Naka, Y., Suzuki, S., & Yano, I. (1999). Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) Comb. Nov., Sphingomonas natatoria (Sly 1985) Comb Nov., Sphingomonas ursincola (Yurkov et al. 1997) Comb. Nov., and emendation of the genus Sphingomonas. Microbiology and Immunology, 43, 339–349.

    CAS  PubMed  Google Scholar 

  381. Yang, T. J., Jang, S. W., & Kim, W. B. (2007). Genetic relationships of Lactuca spp. revealed by RAPD, Inter-SSR, AFLP, and PCR-RFLP analyses. Journal of Crop Science and Biotechnology, 10, 29–34.

    Google Scholar 

  382. Zhang, N. W., Lindhout, P., Niks, R. E., & Jeuken, M. J. W. (2009). Genetic dissection of Lactuca saligna nonhost resistance to downy mildew at various lettuce developmental stages. Plant Pathology, 58, 923–932.

    Google Scholar 

  383. Zhang, L. Y., Zhang, Y. Y., Chen, R. G., Zhang, J. H., Wang, T. T., Li, H. X., et al. (2010). Ectopic expression of the tomato Mi-1 gene confers resistance to root knot nematodes in lettuce (Lactuca sativa). Plant Molecular Biology Reporter, 28, 204–211.

    CAS  Google Scholar 

  384. Zidorn, C. (2008). Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry, 69, 2270–2296.

    CAS  PubMed  Google Scholar 

  385. Zitter, T. A., & Murphy, J. F. (2009). Cucumber mosaic virus. The Plant Health Instructor. doi:10.1094/PHI-I-2009-0518-01.

    Google Scholar 

  386. Zohary, D. (1991). The wild genetic resources of cultivated lettuce (Lactuca sativa L.). Euphytica, 53, 31–35.

    Google Scholar 

Download references

Acknowledgments

The research was supported by grant MSM 6198959215 (Ministry of Education, Youth and Sports of the Czech Republic) and by the internal grant of Palacký University in Olomouc (IGA_PrF_2013_001) and by IF0157 Leafy Vegetable Genetic Improvement Network (VeGIN): Pre-breeding research to support sustainable farming of leafy vegetables and salads (UK Department of Environment Food and Rural Affairs)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aleš Lebeda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lebeda, A., Křístková, E., Kitner, M. et al. Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding. Eur J Plant Pathol 138, 597–640 (2014). https://doi.org/10.1007/s10658-013-0254-z

Download citation

Keywords

  • Taxonomy
  • Biodiversity
  • Gene-pools
  • Gene banks
  • Disease resistance
  • Molecular polymorphism
  • L. serriola
  • L. saligna
  • L. virosa
  • Pest resistance
  • Breeding strategies
  • Transfer of resistance
  • Wild lettuce
  • Germplasm