European Journal of Plant Pathology

, Volume 138, Issue 3, pp 597–640 | Cite as

Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding

  • Aleš LebedaEmail author
  • Eva Křístková
  • Miloslav Kitner
  • Barbora Mieslerová
  • Michaela Jemelková
  • David A. C. Pink


Current knowledge of wild Lactuca L. species, their taxonomy, biogeography, gene-pools, germplasm collection quality and quantity, and accession availability is reviewed in this paper. Genetic diversity of Lactuca spp. is characterized at the level of phenotypic and phenological variation, variation in karyology and DNA content, biochemical traits, and protein and molecular polymorphism. The reported variation in reaction to pathogens and pests of wild Lactuca spp. is summarized, including the viral pathogens (Lettuce mosaic virus-LMV, Mirafiori lettuce virus/Lettuce big vein virus-LBV, Beet western yellows virus-BWYV, Tomato spotted wilt virus-TSWV, Cucumber mosaic virus-CMV, Lettuce necrotic stunt virus-LNSV), bacterial pathogens (corky root-Rhizomonas suberifaciens, bacterial leaf spot-Xanthomonas campestris pv. vitians), fungal pathogens (downy mildew-Bremia lactucae, powdery mildew-Golovinomyces cichoracearum, anthracnose-Microdochium panattoniana, stemphylium leaf spot-Stemphylium spp., sclerotinia drop-Sclerotinia spp., verticillium wilt-Verticillium dahliae, fusarium wilt-Fusarium spp., pythium wilt-Pythium tracheiphylum, P. uncinulatum), nematodes (potato cyst nematode-Globodera rostochiensis, root-knot nematode-Meloidogyne spp., incognita, hapla, javanica, enterolobii), insects and mites (the green lettuce aphid-Nasonovia ribisnigri, the green peach aphid-Myzus persicae, the potato aphid-Macrosiphum euphorbiae, leafminer-Liriomyza spp., L. langei). The approaches used to exploit wild Lactuca spp. in lettuce breeding (interspecific hybridization, cell and tissue culture, transformation) are dicussed, and known examples of lettuce cultivars with traits derived from wild Lactuca spp. are described.


Taxonomy Biodiversity Gene-pools Gene banks Disease resistance Molecular polymorphism L. serriola L. saligna L. virosa Pest resistance Breeding strategies Transfer of resistance Wild lettuce Germplasm 



The research was supported by grant MSM 6198959215 (Ministry of Education, Youth and Sports of the Czech Republic) and by the internal grant of Palacký University in Olomouc (IGA_PrF_2013_001) and by IF0157 Leafy Vegetable Genetic Improvement Network (VeGIN): Pre-breeding research to support sustainable farming of leafy vegetables and salads (UK Department of Environment Food and Rural Affairs)


  1. Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69, 899–904.Google Scholar
  2. Abawi, G. S., & Robinson, R. W. (1991). Reaction of selected lettuce germplasm to artificial inoculation by Meloidogyne hapla in the greenhouse. Journal of Nematology, 23, 519.Google Scholar
  3. Abawi, G. S., Robinson, R. W., Cobb, A. C., & Shail, J. W. (1980). Reaction of lettuce germplasm to artificial inoculation with Sclerotinia minor under greenhouse conditions. Plant Disease, 64, 668–671.Google Scholar
  4. Addoh, P. G. (1971). The distribution and economic importance of plant parasitic nematodes in Ghana. Ghana Journal of Agricultural Science, 4, 21–32.Google Scholar
  5. Agrawal, A. A., & Konno, K. (2009). Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. The Annual Review of Ecology, Evolution, and Systematics, 40, 311–331.Google Scholar
  6. Alconero, R. (1988). Lettuce (Lactuca sativa L.). In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry (pp. 351–369). Berlin: Springer.Google Scholar
  7. Alleyne, E. H., & Morrison, F. O. (1977). The lettuce root aphid, Pemphigus bursarius (L.) (Homoptera: Aphidoidea) in Quebec, Canada. Annals of Entomological Society Quebec, 22, 171–180.Google Scholar
  8. Anonymous (2005). Development of lettuce breeding lines resistant to bacterial leaf spot. HortScience, 40, 1098. Google Scholar
  9. Anonymous (2008). Resistance to the lettuce leaf aphid Nasonovia ribisnigri. Disclosure Number IPCOM000176078D dated 4 Nov. 2008. Prior Art Database Disclosure. <>.
  10. Anwar, S. A., & McKenry, M. V. (2012). Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pakistan Journal of Zoology, 44, 327–333.Google Scholar
  11. Argyris, J., Truco, M. J., Ochoa, O., Knapp, S. J., Still, D. V., Lenssen, G. M., et al. (2005). Quantitative trait loci associated with seed and seedling traits in Lactuca. Theoretical and Applied Genetics, 111, 1365–1376.PubMedGoogle Scholar
  12. Argyris, J., Truco, M. J., Ochoa, O., McHale, L., Dahal, P., van Deynze, A., et al. (2011). A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). Theoretical and Applied Genetics, 122, 95–108.PubMedCentralPubMedGoogle Scholar
  13. Aruga, D., Tsuchiya, N., Matsumura, H., Matsumoto, E., & Hayashida, N. (2012). Analysis of RAPD and AFLP markers linked to resistance to Fusarium oxysporum f. sp lactucae race 2 in lettuce (Lactuca sativa L.). Euphytica, 187, 1–9.Google Scholar
  14. Attalah, Z. K., Hayes, R. J., & Subbarao, K. V. (2011). Fifteen years of Verticillium wilt of lettuce in America’s Salad Bowl: a tale of immigration, subjugation, and abatment. Plant Disease, 95, 784–792.Google Scholar
  15. Azzu, N., & Collette, L. (2008). Addressing the conservation and sustainable utilization of crop wild relatives: the international policy context. In N. Maxted, B. V. Ford–Lloyd, S. P. Kell, J. M. Iriondo, E. Dulloo, & J. Turok (Eds.), Crop wild relative conservation and use (pp. 31–40). Wallingford: CABI.Google Scholar
  16. Bannerot, H., Boulidard, L., Marron, J., & Duteil, M. (1969). Etude de la tolerance au virus de la mosaïque de laitue chez la variété Gallega de invierno. Annales Phytopathologie, 1, 219–226.Google Scholar
  17. Bao, Y., & Neher, D. A. (2011). Survey of lesion and northern root-knot nematodes associated with vegetables in Vermont. Nematropica, 41, 100–108.Google Scholar
  18. Barak, J. D., Koike, S. T., & Gilbertson, R. L. (2001). Role of crop debrits and weeds in the epidemiology of bacterial leaf spot of lettuce in California. Plant Disease, 85, 169–178.Google Scholar
  19. Barak, J. D., Koike, S. T., & Gilbertson, R. L. (2002). Movement of Xanthomonas campestris pv. vitians in the stems of lettuce and seed contamination. Plant Pathology, 51, 506–512.Google Scholar
  20. Barbosa, P. (Ed.). (1998). Conservation biological control. New York: Academic.Google Scholar
  21. Beharav, A., Ben-David, R., Doležalová, I., & Lebeda, A. (2008). Eco-geographical distribution of Lactuca saligna natural populations in Israel. Israel Journal of Plant Sciences, 56, 195–206.Google Scholar
  22. Beharav, A., Ben-Roi, R., Doležalová, I., & Lebeda, A. (2010a). Eco-geographical distribution of Lactuca aculeata natural population in northeastern Israel. Genetic Resources and Crop Evolution, 57, 679–686.Google Scholar
  23. Beharav, A., Ben-David, R., Malarz, J., Stojakowska, A., Michalska, K., Doležalová, I., et al. (2010b). Variation of sesquiterpene lactones in Lactuca aculeata natural population from Israel, Jordan and Turkey. Biochemical Systematics and Ecology, 38, 602–611.Google Scholar
  24. Beharav, A., Lewinsohn, D., Lebeda, A., & Nevo, E. (2006). New wild Lactuca genetic resources with resistance against Bremia lactucae. Genetic Resources and Crop Evolution, 53, 467–474.Google Scholar
  25. Bhat, R. G., & Subbarao, K. V. (1999). Host range specificity in Verticillium dahliae. Phytopathology, 89, 1218–1225.PubMedGoogle Scholar
  26. Blackman, R. L., & Eastop, V. F. (2000). Aphids on the world’s crops. Chichester: John Wiley & Sons.Google Scholar
  27. Blok, I., & van der Plaats-Niterink, A. J. (1978). Pythium uncinulatum sp. nov. and P. tracheiphilum pathogenic to lettuce. Netherlands Journal of Plant Pathology, 84, 135–147.Google Scholar
  28. Bos, L., & Huijberts, N. (1990). Screening for resistance to big-vein disease of lettuce (Lactuca sativa). Crop Protection, 9, 446–452.Google Scholar
  29. Bos, L., Huijberts, N., & Cuperus, C. (1994). Further observations on variation of lettuce mosaic virus in relation to lettuce (Lactuca sativa) and a discussion of resistance terminology. European Journal of Plant Pathology, 100, 293–314.Google Scholar
  30. Boukema, I. W., Hazekamp, T., & van Hintum, T. J. L. (1990). The CGN collection reviews: The CGN lettuce collection. Wageningen: Centre for Genetic Resources, Netherlands.Google Scholar
  31. Boydson, R. A., Mojtahedi, H., Crosslin, J. M., Thomas, P. E., Anderson, T., & Riga, E. (2004). Evidence for the influence of weeds on corky ringspot persistence in alfalfa and Scotch spearmint rotations. Američan Journal of Potato Research, 81, 215–225.Google Scholar
  32. Bridge, J. (1976). Plant parasitic nematodes from the lowlands and highlands of Equador. Nematropica, 6, 18–23.Google Scholar
  33. Brittlebank, C. C. (1919). Tomato disease. Journal of Department of Agriculture of Victoria Australia, 17, 231–235.Google Scholar
  34. Brown, P. R., & Michelmore, R. W. (1988). The genetics of corky root resistance in lettuce. Phytopathology, 78, 1145–1150.Google Scholar
  35. Burdon, J. J., & Thrall, P. H. (2008). Pathogen evolution across the agro-ecological interface: implications for disease management. Evolutionary Applications, 1, 57–65.PubMedCentralGoogle Scholar
  36. Carvalho Filho, J. L. S., Gomes, L. A. A., Westerich, J. N., Maluf, W. R., Campos, V. P., & Ferreira, S. (2008). Inheritance of resistance of ‘Salinas 88’ lettuce to the root-knot nematode Meloidogyne incognita (Kofoid & White) Chitwood. Revista Brasileira de Agrociência, 14, 279–289.Google Scholar
  37. Carisse, O., Ouimet, A., Toussaint, V., & Phillon, V. (2000). Evaluation of the effect of seed treatments, bactericides, and cultivars on bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians. Plant Disease, 84, 295–299.Google Scholar
  38. Chen, Y. H., Vhen, H. Y., Hsu, C. L., & Yen, G. C. (2007). Induction of apoptosis by the Lactuca indica L. in human leucemia cell line and its active components. Journal of Agricultural and Food Chemistry, 55, 1743–1749.PubMedGoogle Scholar
  39. Chitambar, J. J. (1993). Host range of Hemicycliophora poranga and its pathogenicity on tomato. Fundamental and Applied Nematology, 16, 557–561.Google Scholar
  40. Chitambar, J. J. (2007). Status of ten quarantine “A” nematode pests in California. California Plant Pest & Disease Report, 2, 62–75.Google Scholar
  41. Cho, J. J., Mau, R. F. L., German, T. L., Hartmann, R. W., Yudin, L. S., Gonsalves, D., et al. (1989). A multidisciplinary approach to management of Tomato spotted wilt virus in Hawaii. Plant Disease, 73, 375–383.Google Scholar
  42. Chupp, C., & Sherf, A. F. (1960). Vegetable diseases and their control. New York: Ronald Press.Google Scholar
  43. Chupeau, M. C., Maisonneuve, B., Bellec, Y., & Chupeau, Y. (1994). A Lactuca universal hybridizer, and its use in creation of fertile interspecific somatic hybrids. Molecular Genetics and Gemonics, 245, 139–145.Google Scholar
  44. Cid, M., Ávila, A., Garía, A., Abad, J., & Fereres, A. (2012). New sources of resistance to letuce aphids in Lactuca spp. Arthropod-Plant Interactions, 6, 655–669.Google Scholar
  45. Cole, R. A., Sutherland, R. A., & Riggall, W. E. (1991). The use of polyacrylamide gradient gel electrophoresis to identify variation in isozymes as markers for Lactuca species and resistance to the lettuce root aphid Pemphigus bursarius. Euphytica, 56, 237–242.Google Scholar
  46. Coutts, B. A., Thomas-Carroll, M. L., & Jones, R. A. C. (2004). Analysing spatial patterns of spread of Lettuce necrotic yellows virus and lettuce big-vein disease in lettuce field plantings. Annals of Applied Biology, 145, 339–343.Google Scholar
  47. Crute, I. R. (1992). From breeding to cloning (and back again) a case-study with lettuce downy mildew. Annual Review of Phytopathology, 30, 485–506.PubMedGoogle Scholar
  48. Crute, I. R., & Johnson, A. G. (1976). The genetic relationship between races of Bremia lactucae and cultivars of Lactuca sativa. Annals of Applied Biology, 83, 125–137.Google Scholar
  49. Curtis, I. S., Caiping, H., Scott, R., Power, J. B., & Davey, M. R. (1996). Genomic male sterility in lettuce, a baseline for the production of F1 hybrids. Plant Science, 113, 113–119.Google Scholar
  50. DAFF—Department of Agriculture, Fisheries and Forestry Biosecurity. (2012). Draft import risk analysis report for fresh ginger from Fiji. Canberra: Department of Agriculture, Fisheries and Forestry. CCBY 3.0.Google Scholar
  51. D’Andrea, L., Felber, F., & Guadagnuolo, R. (2008). Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions. Environmental Biosafety Research, 7, 61–71.PubMedGoogle Scholar
  52. da Silveira, S. G. P. (1990). Two hosts of Aphelenchoides besseyi in Brazil. Nematologia Brasileira, 14, 146–150.Google Scholar
  53. Davey, M. R., & Anthony, P. (2011). Lactuca. In C. Kole (Ed.), Wild crop relatives: genomic and breeding resources (pp. 115–128). Berlin: Heidelberg: Springer-Verlag.Google Scholar
  54. Davey, M. R., Anthony, P., Power, J. B., & Lowe, K. C. (2007a). Leafy vegetables. In C. Kole & T. C. Hall (Eds.), Compendium of transgenic crop plants, Vol. 6, Transgenic vegetable crops (pp. 217–248). Chichester: Willey-Blackwell.Google Scholar
  55. Davey, M. R., Anthony, P., Van Hooff, P., Power, J. B., & Lowe, K. C. (2007b). Lettuce. In E. C. Pua & M. R. Davey (Eds.), Biotechnology in agriculture and forestry, Vol. 59, Transgenic crops IV (pp. 221–249). Berlin: Springer.Google Scholar
  56. Davey, M. R., McCabe, M. S., Mohapatra, U., & Power, J. B. (2002). Genetic manipulation of lettuce. In G. G. Khachatourians, A. McHughen, R. Scorza, W. K. Nip, & Y. H. Hui (Eds.), Transgenic plants and crops (pp. 613–635). New York: Marcel Dekker, Inc.Google Scholar
  57. Davis, R. M., Subbarao, K. V., Raid, R. N., & Kurtz, E. A. (1997). Compendium of lettuce diseases. St. Paul: APS Press, The American Phytopathologica Society.Google Scholar
  58. Davis, E. E., & Venette, R. C. (2004). Mini risk assessment false Columbia root-knot nematode: Meloidogyne fallax Karssen [Nematoda: Heteroderidae]. Department of Entomology, University of Minnesota <> [last accessed 2013-01-22]
  59. Davis, R. M., Winterbottom, C. Q., & Aguiar, J. L. (1995). First report of Pythium uncinulatum on romaine lettuce in California. Plant Disease, 79, 642.Google Scholar
  60. de Carvalho, J. L. S., Gomes, L. A. A., Maluf, W. R., Oliveira, R. R., Costa, D. S., Fereira, S., et al. (2011). Resistance to Meloidogyne incognita race 1 in the lettuce cultivars grand rapids and Salinas-88. Euphytica, 182, 199–208.Google Scholar
  61. de Vries, I. M. (1990). Crossing experiments of lettuce cultivars and species (Lactuca sect. Lactuca, Compositae). Plant Systematics and Evolution, 171, 233–248.Google Scholar
  62. Dietzgen, R. G., Callaghan, B., Wetzel, T., & Dale, J. L. (2006). Completion of the genome sequence of Lettuce necrotic yellows virus, typespecies of the genus Cytorhabdovirus. Virus Research, 118, 16–22.Google Scholar
  63. Dias, J. S., & Ortiz, R. (2012a). Transgenic vegetable breeding for nutritional quality and health benefits. Food and Nutrition Sciences, 3, 1209–1219.Google Scholar
  64. Dias, J. S., & Ortiz, R. (2012b). Transgenic vegetable crops: progress, potentials and prospects. Plant Breeding Rewievs, 35, 151–246.Google Scholar
  65. Dickinson, M. J., Jones, D. A., & Jones, J. D. G. (1993). Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Molecular Plant-Microbe Interactions, 6, 341–347.PubMedGoogle Scholar
  66. Dickson, M. H. (1963). Resistance to corky root rot in head lettuce. Americain Society for Horticultural Science, 82, 388–390.Google Scholar
  67. Dinant, S. (1997). Coat protein mediated protection in Lactuca sativa against lettuce mosaic potyvirus strains. Molecular Breeding, 3, 75–86.Google Scholar
  68. Dinant, S., Blaise, F., Kusiak, C., Astier-Manifacier, S., & Albouy, J. (1993). Heterologous resistance to potato virus Y in transgenic tobacco plants expressing the coat protein gene of lettuce mosaic potyvirus. Phytopathology, 83, 818–824.Google Scholar
  69. Dinant, S., & Lot, H. (1992). Lettuce mosaic virus: a review. Plant Pathology, 41, 528–542.Google Scholar
  70. Doležalová, I., Křístková, E., Lebeda, A., & Vinter, V. (2002). Description of morphological characters of wild Lactuca L. spp. genetic resources (English-Czech version). Horticultural Science (Prague), 29, 56–83.Google Scholar
  71. Doležalová, I., Křístková, E., Lebeda, A., Vinter, V., Astley, D., & Boukema, I. W. (2003a). Basic morphological descriptors for genetic resources of wild Lactuca spp. Plant Genetic Resources Newsletter, 134, 1–9.Google Scholar
  72. Doležalová, I., Lebeda, A., Dziechciarková, M., Křístková, E., Astley, D., & van de Wiel, C. C. M. (2003b). Relationships among morphological characters, isozymes polymorphism and DNA variability-the impact on Lactuca germplasm taxonomy. Czech Journal of Genetics and Plant Breeding, 39, 59–67.Google Scholar
  73. Doležalová, I., Lebeda, A., & Křístková, E. (2001). Prickly lettuce (Lactuca serriola L.) germplasm collecting and distribution study in Slovenia and Sweden. Plant Genetic Resources Newsletter, 128, 41–44.Google Scholar
  74. Doležalová, I., Lebeda, A., Křístková, E., & Novotná, A. (2005). Morphological variation of Lactuca serriola populations from some European countries. In XVII International Botanical Congress, Vienna, Austria, 1723 July 2005, Abstracts. (p. 458).Google Scholar
  75. Doležalová, I., Lebeda, A., Křístková, E., & Novotná, A. (2007). Relevance of morphologic assessment of wild Lactuca spp. germplasm for their taxonomic determination. Bulletin of Botanical Gardens, Museums & Collections, Polish Botanical Society, 16A, 22.Google Scholar
  76. Doležalová, I., Lebeda, A., Tiefenbachová, I., & Křístková, E. (2004). Taxonomic reconsideration of some Lactuca spp. germplasm maintained in world genebank collections. Acta Horticulturae, 634, 193–201.Google Scholar
  77. Dubois, V., Botton, E., Meyer, C., Rieu, A., Bedu, A., Maisonneuve, B., et al. (2005). Systematic silencing of a tobacco nitrate reductase transgene in lettuce (Lactuca sativa L.). Journal of Experimental Botany, 56, 2379–2388.PubMedGoogle Scholar
  78. Duffus, J. E. (1961). Economic significance of beet western yellows (radish yellows) on sugar beet. Phytopathology, 51, 605–607.Google Scholar
  79. Duffus, J. E., Liu, H. Y., Wisler, G. C., & Li, R. (1996). Lettuce chlorosis virus-a new whitefly trasmitted closterovirus. European Journal of Plant Pathology, 102, 591–596.Google Scholar
  80. Dunn, J. A. (1959). The biology of the lettuce root aphid. Annals of Applied Biology, 47, 475–491.Google Scholar
  81. Dziechciarková, M., Lebeda, A., Doležalová, I., & Astley, D. (2004). Characterization of Lactuca spp. germplasm by protein and molecular markers-a review. Plant Soil Environment, 50, 47–58.Google Scholar
  82. Edwards, M. C., Gonsalves, D., & Provvidenti, R. (1983). Genetic analysis of cucumber mosaic virus in relation to host resistence: location of determinants for pathogenicity to certain legumes and Lactuca saligna. Phytopathology, 73, 269–273.Google Scholar
  83. Eenink, A. H., & Dieleman, F. L. (1983). Inheritance of resistance to the leaf aphid Nasonovia ribis-nigri in the wild lettuce species Lactuca virosa. Euphytica, 32, 691–695.Google Scholar
  84. Eenink, A. H., Dieleman, F. L., & Groenwold, R. (1982a). Resistance of lettuce (Lactuca) to the leaf aphid Nasonovia ribis-nigri. 2. Inheritance of the resistance. Euphytica, 31, 301–304.Google Scholar
  85. Eenink, A. H., Groenwold, R., & Dieleman, F. L. (1982b). Resistance of lettuce (Lactuca) to the leaf aphid Nasonovia ribis-nigri. 1: transfer of resistance from L. virosa to L. sativa by interspecific crosses and selection of resistant breeding lines. Euphytica, 31, 291–300.Google Scholar
  86. Elia, M., & Piglionica, V. (1964). Preliminary observations on the resistance of some lettuce cultivars to collar rot caused by Sclerotinia spp. Phytopathologia Mediterranea, 3, 37–39.Google Scholar
  87. Ellis, P. R., McClement, S. J., Saw, P. L., Phelps, K., Vice, W. E., Kift, N. B., et al. (2002). Identification of sources of resistance in lettuce to the lettuce root aphid, Pemphigus bursarius-Resistance to lettuce root aphid. Euphytica, 125, 305–315.Google Scholar
  88. Ellis, P. R., Pink, D. A. C., & Ramsey, A. D. (1994). Inheritance of resistance to lettuce root aphid in the lettuce cultivars ‘Avoncrisp’ and ‘Lakeland’. Annals of Applied Biology, 124, 141–151.Google Scholar
  89. Farrara, B. F., & Michelmore, R. W. (1987). Identification of new sources of resistance to downy mildew in Lactuca spp. HortScience, 22, 647–649.Google Scholar
  90. Feráková, V. (1977). The genus Lactuca L. in Europe. Bratislava: Univerzita Komenského.Google Scholar
  91. Ferris, H. (2013). “The Nematode-plant expert information system”. A Virtual Encyclopedia on Soil and Plant Nematodes “NEMAPLEX”. Department of Nematology, University of California. <>. [last accessed 2013-01-22]
  92. Ford-Lloyd, B., Kell, S. P., & Maxted, N. (2008). Establishing conservation priorities for crop wild relatives. In N. Maxted, B. V. Ford–Lloyd, S. P. Kell, J. M. Iriondo, E. Dulloo, & J. Turok (Eds.), Crop wild relative conservation and use (pp. 110–119). Wallingford: CABI.Google Scholar
  93. Fujinaga, M., Ogiso, H., Tsuchiya, N., Saito, H., Yamanaka, S., Nozue, M., et al. (2003). Race 3, a new race of Fusarium oxysporum f. sp. lactucae determined by a differential system with commercial cultivars. Journal of General Plant Pathology, 69, 23–28.Google Scholar
  94. Fry, P. R., Close. R C., Procter, C. H., & Sunde, R. (1972). Lettuce necrotic yellows virus in New Zealand. Journal of Agricultural Research, 16, 143–146.Google Scholar
  95. Funk, V. A., Susanna, A., Stuessy, T. F., & Bayer, R. J. (Eds.). (2009). Systematics, evolution and biogeography of compositae. Vienna: International Association for Plant Taxonomy.Google Scholar
  96. Galea, V. J., & Price, T. V. (1988). Resistance of lettuce and related species to anthracnose (Microdochium panattonianum) in Australia. Plant Pathology, 37, 363–372.Google Scholar
  97. Galea, V. J., Price, T. V., & Sutton, B. C. (1986). Taxonomy and biology of the lettuce anthracnose fungus. Transactions of the British Mycological Society, 86, 619–628.Google Scholar
  98. Garibaldi, A., Gilardi, G., & Gullino, M. L. (2004). Varietal resistance of lettuce to Fusarium oxysporum f. sp. lactucae. Crop Protection, 23, 845–851.Google Scholar
  99. Garibaldi, A., Gilardi, G., & Gullino, M. L. (2007). First report of Verticillium wilt caused by Verticillium dahliae on lettuce in Italy. Plant Disease, 91, 990.Google Scholar
  100. Gaskin, T. A. (1958). Weed hosts of Meloidogyne incognita in Indiana. Plant Disease Reporter, 42, 802–803.Google Scholar
  101. George, R. A. T. (1999). Vegetable seed production (2nd ed.). Wallingford: CABI Publishing.Google Scholar
  102. Gergerich, R. C., & Dolja, V. V. (2006). Introduction to plant viruses, the invisible Foe. The Plant Health Instructor. doi: 10.1094/PHI-I-2006-0414-01.Google Scholar
  103. German-Retana, S., Walter, J., & Le Gall, O. (2008). Lettuce mosaic virus: from pathogen diversity to host interactors. Molecular Plant Pathology, 9, 127–136.PubMedGoogle Scholar
  104. German-Retana, S., Candresse, T., & Martelli, G. (1999). Closteroviruses (Closteroviridae). In Encyclopedia of virology (2nd ed., pp. 266–273). San Diego: Academic.Google Scholar
  105. Gharabadiyan, F., Jamali, S., Yazdi, A. A., Hadizadeh, M. H., & Eskandari, A. (2012). Weed hosts of root-knot nematodes in tomato fields. Journal of Plant Protection Research, 52, 230–234.Google Scholar
  106. Giannino, D., Nicolodi, C., Testone, G., Di Giacomo, E., Iannelli, M. A., Frugis, G., et al. (2008). Pollen-mediated transgene flow in lettuce (Lactuca sativa L.). Plant Breeding, 127, 308–314.Google Scholar
  107. Gilberton, R. L. (1996). Management and detection of LMV: production of LMV resistant lettuce and LMV coat protein antibodies (pp. 78–81). Iceberg Lettuce Advisory Board Annual Report.Google Scholar
  108. Gomes, L. A. A., Maluf, W. R., & Campos, V. P. (2000). Inherintance of the resistance reaction of the lettuce cultivar ‘Grand Rapids’ to the southern root-knot nematode Meloidogyne incognita (Kofoid & White) Chitwood. Euphytica, 114, 34–46.Google Scholar
  109. Gowda, D. N., Kurdikeri, C. B., & Gowda, C. K. (1995). Weeds as hosts of root-knot nematodes. Indian Journal of Nematology, 25, 215–216.Google Scholar
  110. Groenwold, R. (1983). Onderzoek van de relatie tussen Lactuca en Bremia lactucae. Verslag van een voorlichtingsbijeenkomst voor slaveredelaars (vervolg). Zaadbelangen, 37, 132.Google Scholar
  111. Groves, R. L., Walgenbach, J. F., Moyer, J. W., & Kennedy, G. G. (2002). The role of weed hosts and tobacco thrips, Frankliniella fusca, in the epidemiology of tomato spotted wilt virus. Plant Disease, 86, 573–582.Google Scholar
  112. Grube, R. C. (2004). Genetic analysis of resistance to lettuce drop caused by Sclerotinia minor. Acta Horticulturae, 637, 49–53.Google Scholar
  113. Grube, R. C., Hayes, R., Mou, B., & McCreight, J. D. (2005a). Lettuce breeding, USDA-ARS. California Lettuce Research Board Annual Report, 2004–2005.Google Scholar
  114. Grube, R., & Ryder, E. (2004). Identification of lettuce (Lactuca sativa L.) germplasm with genetic resistance to drop caused by Sclerotinia minor. Journal of the American Society for Horticultiral Science, 129, 70–76.Google Scholar
  115. Grube, R. C., Wintermantel, W. M., Hand, P., Aburomia, R., Pink, D. A. C., & Ryder, E. J. (2005b). Genetic analysis and mapping of resistance to lettuce dieback: a soilborne disease caused by tombusviruses. Theoretical and Applied Genetics, 110, 259–268.PubMedGoogle Scholar
  116. Haley, V., & McCreight, J. D. (1990). Resistance of wild lettuce (Lactuca saligna L.) to lettuce infectious yellows virus. HortScience, 25, 1163. Abstract.Google Scholar
  117. Hampton, R. O., Keller, K. E., & Baggett, J. R. (1998). Beet western yellows luteovirus in Western Oregon. Plant Disease, 82, 140–148.Google Scholar
  118. Hancock, J. F. (2012). Plant evolution and the origin of crop species (3rd ed.). Wallingford: CABI.Google Scholar
  119. Hartman, Y., Hooftman, D. A. P., Schranz, M. E., & van Tienderen, P. H. (2013a). QTL analysis reveals the genetic architecture of domestication traits in Crisphead lettuce. Genetic Resources and Crop Evolution, 60, 1487–1500.Google Scholar
  120. Hartman, Y., Hooftman, D. A., Uwimana, B., van de Wiel, C. C. M., Smulders, M. J., Visser, R. G., et al. (2012). Genomic regions in crop-wild hybrids of lettuce are affected differently in different environments: implications for crop breeding. Evolutionary Applications, 5, 629–640.PubMedCentralPubMedGoogle Scholar
  121. Hartman, Y., Uwimana, B., Hooftman, D. A. P., Schranz, M. E., van de Wiel, C. C. M., Smulders, M. J. M., et al. (2013b). Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses. Evolutionary Applications. doi: 10.1111/eva.12043.PubMedCentralPubMedGoogle Scholar
  122. Hayes, R. J., Maruthachalam, K., Vallad, G. E., Klosterman, S. J., & Subbarao, K. V. (2011a). Selection for resistance to Verticillium wilt caused by race 2 isolates of Verticillium dahliae in accessions of lettuce (Lactuca sativa L.). HortScience, 46, 201–206.Google Scholar
  123. Hayes, R. J., & Ryder, E. J. (2007). Introgression of novel alleles for partial resistance to big vein disease from Lactuca virosa into Cultivated Lettuce. HortScience, 42, 3539.Google Scholar
  124. Hayes, R. J., Ryder, E. J., & Robinson, B. (2004). Introgression of big vein tolerance from Lactuca virosa L. into cultivated lettuce (Lactuca sativa L.). HortScience, 39, 881.Google Scholar
  125. Hayes, R. J., Ryder, E. J., & Wintermantel, W. M. (2008). Genetic variation for big-vein symptom expression and resistance to Mirafiori lettuce big vein virus in Lactuca virosa L., and wild relative of cultivated lettuce. Euphytica, 164, 493–500.Google Scholar
  126. Hayes, R. J., McHale, L. K., Vallad, G. E., Truco, M. J., Michelmore, R. W., Klosterman, S. J., et al. (2011b). The inheritance of resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae in the lettuce cultivar La Brillante. Theoretical and Applied Genetics, 123, 509–517.PubMedGoogle Scholar
  127. Hayes, R. J., Vallad, G. E., McHale, L. K., Truco, M. J., Ochoa, O. E., Michelmore, R. W., et al. (2009). Breeding for resistance-new approaches and challenges. Phytopathology, 99, S168.Google Scholar
  128. Hayes, R. J., Vallad, G. E., Qin, Q. M., Grube, R. C., & Subbarao, K. V. (2007a). Variation for resistance to Verticillium wilt in lettuce (Lactuca sativa L). Plant Disease, 91, 439–445.Google Scholar
  129. Hayes, R. J., Vallad, G. E., & Subbarao, K. V. (2007b). The inheritance of resistance to race 1 isolates of Verticillium dahliae in lettuce. HortScience, 37, 1015–1022.Google Scholar
  130. Hayes, R. J., Wintermantel, W. M., Nicely, P. A., & Ryder, E. J. (2006). Host resistance to mirafiori lettuce big-vein virus and lettuce big-vein associated virus and virus sequence diversity and frequency in California. Plant Disease, 90, 233–239.Google Scholar
  131. Hayes, R. J., Wu, B. M., Pryor, B. M., Chitrampalam, P., & Subbarao, K. V. (2010). Assessment of resistance in lettuce (Lactuca sativa L.) to mycelial and ascospore infection by Sclerotinia minor Jagger and S. sclerotiorum (Lib.) de Bary. HortScience, 45, 333–341.Google Scholar
  132. Hill, M., Witsenboer, H., Zabeau, M., Vos, P., Kesseli, R., & Michelmore, R. (1996). PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theoretical and Applied Genetics, 93, 1202–1210.Google Scholar
  133. Hobbs, H. A., Black, L. L., Story, R. N., Valverde, R. A., Bond, W. P., Gatti, J. M., et al. (1993). Transmission of tomato spotted wilt virus from pepper and three weed hosts by Frankliniella fusca. Plant Disease, 77, 797–799.Google Scholar
  134. Hooftman, D. A. P., Flavell, A. J., Jansen, H., den Nijs, H. C. M., Syed, N. H., Sørensen, A. P., et al. (2011). Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development. Evolutionary Applications, 4, 648–659.PubMedCentralGoogle Scholar
  135. Hooftman, D. A. P., Hartman, Y., Oostermeijer, J. G. B., & den Nijs, J. C. M. (2009). Existence of vigorous lineages of crop-wild hybrids in lettuce under field conditions. Environmental Biosafety Research, 8, 203–217.PubMedGoogle Scholar
  136. Hu, J. G., Ochoa, O. E., Truco, M. J., & Vick, B. A. (2005). Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica, 144, 225–235.Google Scholar
  137. Huang, J., McAuslane, H. J., & Nuessly, G. S. (2003). Resistance in lettuce to Diabrotica balteata (Coleoptera: Chrysomelidae): the roles of latex and inducible defense. Environmental Entomology, 32, 9–16.Google Scholar
  138. Huang, X., & Ploeg, A. T. (2001). Effect of plant age and Longidorus africanus on the growth of lettuce and carrot. Journal of Nematology, 33, 2–3.Google Scholar
  139. Hubbard, J. C., & Gerik, J. S. (1993). A new wilt disease of lettuce incited by Fusarium oxysporum f. sp. lactucum forma specialis nov. Plant Disease, 77, 750–754.Google Scholar
  140. Iriondo, J. M., & De Hond, L. (2008). Crop wild relative in-situ management and monitoring: the time has come. In N. Maxted, B. V. Ford–Lloyd, S. P. Kell, J. M. Iriondo, E. Dulloo, & J. Turok (Eds.), Crop wild relative conservation and use (pp. 319–330). Wallingford: CABI.Google Scholar
  141. Jagger, I. C. (1921). A transmissible mosaic disease of lettuce. Journal of Agricultural Research, 20, 737–741.Google Scholar
  142. Jagger, I. C., & Chandler, N. (1934). Big vein, a disease of lettuce. Phytopathology, 24, 1253–1256.Google Scholar
  143. Jeuken, M. (2012). Industry highlights. Breeding for durable resistance against an oomycete in lettuce. In G. Acquaah (Ed.), Principles of plant genetics and breeding. Second edition (chapter 14) (pp. 273–276). Chichester: Wiley-Blackwell.Google Scholar
  144. Jeuken, M., & Lindhout, P. (2002). Lactuca saligna, a non-host for lettuce downy mildew (Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance. Theoretical and Applied Genetics, 105, 384–391.PubMedGoogle Scholar
  145. Jeuken, M., & Lindhout, P. (2004). The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theoretical and Applied Genetics, 109, 394–401.PubMedGoogle Scholar
  146. Jeuken, M. J. W., Pelgrom, K., Stam, P., & Lindhout, P. (2008). Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population. Theoretical and Applied Genetics, 116, 845–857.PubMedCentralPubMedGoogle Scholar
  147. Jeuken, M., van Wijk, R., Peleman, J., & Lindhout, P. (2001). An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa × L. saligna F-2 populations. Theoretical and Applied Genetics, 103, 638–647.Google Scholar
  148. Jeuken, M. J. W., Zhang, N. W., McHale, L. K., Pelgrom, K., den Boer, E., Lindhout, P., et al. (2009). Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Plant Cell, 21, 3368–3378.PubMedCentralPubMedGoogle Scholar
  149. Johnson, W. C., Jackson, L. E., Ochoa, O., van Wijk, R., Peleman, J., St. Clarir, D. A., et al. (2000). Lettuce, a shallowrooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theoretical and Applied Genetics, 101, 1066–1073.Google Scholar
  150. Jones, D. A., Dickinson, M. J., Balint-Kurti, P. J., Dixon, M. S., & Jones, J. D. G. (1993). Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5 and Cf-9 genes for resistance to Cladosporium fulvum. Molecular Plant-Microbe Interactions, 6, 348–357.Google Scholar
  151. Judelson, H. S., & Michelmore, R. W. (1992). Temperature and genotype interactions in the expression of host resistance in lettuce downy mildew. Physiological and Molecular Plant Pathology, 40, 233–245.Google Scholar
  152. Kanamoto, H., Yamashita, A., Asao, H., Okumura, S., Takase, H., Hattori, M., et al. (2006). Efficient and stable transformation of Lactuca sativa L. cv. ‘Cisco’ (lettuce) plastids. Transgenic Research, 15, 205–217.PubMedGoogle Scholar
  153. Kaur, P., & Mitkowski, N. A. (2010). Evaluation of Lactuca germplasm for resistance to the northern root-knot nematode (Meloidogyne hapla Chitwood). International Journal of Vegetable Science, 17, 26–36.Google Scholar
  154. Kawazu, Y., Fujiyama, R., & Noguchi, Y. (2009). Transgenic resistance to Mirafiori lettuce virus in lettuce carrying inverted repeats of the viral coat protein gene. Transgenic Research, 18, 113–120.Google Scholar
  155. Kawazu, Y., Fujiyama, R., Noguchi, Y., Kjubota, M., Ito, H., & Fukuoka, H. (2010). Detailed characterization of Mirafiori lettuce virus-resistant transgenic lettuce. Transgenic Research, 19, 211–220.PubMedGoogle Scholar
  156. Kesseli, R., Ochoa, O., & Michelmore, R. (1991). Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce (L. sativa). Genome, 34, 430–436.Google Scholar
  157. Kesseli, R. V., Paran, I., & Michelmore, R. W. (1994). Analysis of a detailed genetic linkage map of Lactuca sativa (Lettuce) constructed from RFLP and RAPD markers. Genetics, 136, 1435–1446.PubMedGoogle Scholar
  158. Kim, K. H., Kim, Y. H., & Lee, K. R. (2007). Isolation of quinic acid derivatives and flavonoids from the aerial parts of Lactuca indica L. and their hepatoprotective activity in vitro. Bioorganic and Medicinal Chemistry Letters, 17, 6739–6743.PubMedGoogle Scholar
  159. Kisiel, W., & Barszcz, B. (1998). A germacrolide glucoside from Lactuca tatarica. Phytochemistry, 48, 205–206.Google Scholar
  160. Kisiel, W., & Michalska, K. (2009). Lignans ansd sesquiterpenoids from Lactuca sibirica. Fitoterapia, 79, 241–244.Google Scholar
  161. Kisiel, W., & Zielinska, K. (2000). Sesquiterpenoids and phenolics from Lactuca perennis. Fitoterapia, 71, 86–87.PubMedGoogle Scholar
  162. Kitner, M., Lebeda, A., Doležalová, I., Maras, M., Křístková, E., Nevo, E., et al. (2008). AFLP analysis of Lactuca saligna germplasm collections from four European and three Middle Eastern countries. Israel Journal of Plant Sciences, 56, 185–193.Google Scholar
  163. Klocke, E., Nothnagel, T., & Schumann, G. (2010). Vegetables. In F. Kempken & C. Jung (Eds.), Genetic modification of plants, agriculture, horticulture and forestry (pp. 449–552). Berlin: Springer.Google Scholar
  164. Koenning, S. R., Overstreet, C., Noling, J. W., Donald, P. A., Becker, J. O., & Fortnum, B. A. (1999). Survey of crop losses in response to Phytoparasitic Nematodes in the United States for 1994. Supplement to the Journal of Nematology, 31, 587–618.Google Scholar
  165. Kohl, L. M. (2011). Astronauts of the Nematode World: An Aerial View of Foliar Nematode Biology, Epidemiology, and Host Range. APSnet Features. doi: 10.1094/APSnetFeature-2011-0111.Google Scholar
  166. Koopman, W. J. M. (1999). Plant systematics as useful tool for plant breeders, examples from lettuce. In A. Lebeda & E. Křístková (Eds.), Eucarpia leafy vegetables ′99, proceedings of the eucarpia meeting on leafy vegetables genetics and breeding (pp. 95–105). Olomouc: Palacký University in Olomouc.Google Scholar
  167. Koopman, W. J. M. (2000). Identifying lettuce species (Lactuca subs. Lactuca, Asteraceae). A practical application of flow cytometry. Euphytica, 116, 151–159.Google Scholar
  168. Koopman, W. J. M. (2002). Zooming in on the lettuce genome: Species relationships in Lactuca s.l. inferred from chromosomal and molecular characters. Ph.D. diss., Wageningen University, The Netherlands.Google Scholar
  169. Koopman, W. J. M., & de Jong, H. J. (1996). A numerical analysis of karyotypes and DNA amounts in lettuce cultivars and species (Lactuca subs. Lactuca, Compositae). Acta Botanica Neerlandica, 45, 211–222.Google Scholar
  170. Koopman, W. J. M., Guetta, E., Van de Wiel, C. C. M., Vosman, B., & Van den Berg, R. G. (1998). Phylogenetic relationships among Lactuca (Asteraceae) species and related genera based on ITS-1 DNA sequences. American Journal of Botany, 85, 1517–1530.PubMedGoogle Scholar
  171. Koopman, W. J. M., Zevenbergen, M. J., & Van den Berg, R. G. (2001). Species relationships in Lactuca s.l. (Lactuceae, Asteraceae) inferred from AFLP fingerprints. American Journal of Botany, 88, 1881–1887.PubMedGoogle Scholar
  172. Krause-Sakate, R., Le Gall, O., Fakhfakh, H., Peypelut, M., Marrakchi, M., Varveri, C., et al. (2002). Molecular and biological characterization of Lettuce mosaic virus (LMV) isolates reveals a distanct and widespread type of resistance-breaking isolate: LMV-Most. Phytopathology, 92, 563–572.PubMedGoogle Scholar
  173. Krause-Sakate, R., Mello, N. R., Pavan, A. M., Zambolim, M. E., Carvalho, G. M., Le Gall, O., et al. (2001). Molecular characterization of two brazilian isolates of Lettuce mosaic virus with distinct biological properties. Phytopathologia Brasileira, 26, 153–157.Google Scholar
  174. Křístková, E., Lebeda, A., & Doležalová I. (2007a). Phenotypic variability of Lactuca saligna germplasm collected in Italy and France. In EUCARPIA Leafy Vegetables 2007, Conference Abstracts (p. 15). Warwick: University of Warwick.Google Scholar
  175. Křístková, E., Lebeda, A., Doležalová, I., Vinter, V., & Křístková, A. (2007b). Variation in developmental stages of Lactuca serriola L. (prickly lettuce) germplasm from different European countries. In EUCARPIA Leafy Vegetables 2007, Conference Abstracts (p. 16). Warwick: University of Warwick.Google Scholar
  176. Křístková, E., Lebeda, A., Kitner, M., Vafková, B., Matoušková, Z., Doležalová, I., et al. (2012). Phenotypes of the natural interspecific hybrids in the genus Lactuca. Úroda, 60, 28–31.Google Scholar
  177. Křístková, E., Tvardková, M., & Lebeda, A. (2011). Characterization of developmental stages in Lactuca saligna germplasm from Europe and USA. In Eucarpia Leafy Vegetables 2011. Abstract (p.78). Villneuve d’ Ascq: Université Lille Nord de France.Google Scholar
  178. Kuang, H., Ochoa, O. E., Nevo, E., & Michelmore, R. W. (2006). The disease resistance gene Dm3 is infrequent in natural populations of Lactuca serriola due to deletions and frequent gene conversions at the RGC2 locus. Plant Journal, 47, 38–48.PubMedGoogle Scholar
  179. Kuang, H., van Eck, H. J., Sicard, D., Michelmore, R., & Nevo, E. (2008). Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster. Genetics, 178, 1547–1558.PubMedGoogle Scholar
  180. Kumar, S., Ray, J., Davison, E. M., Cunnington, J. H., & de Alwis, S. (2007). First record of Pythium tracheiphilum associated with lettuce wilt and leaf blight in Australia. Australasian Plant Disease Notes, 2, 7–9.Google Scholar
  181. Kwon, S. J., Truco, M. J., & Hu, J. G. (2012). LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting. Molecular Breeding, 29, 887–901.Google Scholar
  182. Lebeda, A. (1984). Race-specific factors of resistance to Bremia lactucae in the world assortment of lettuce. Scientia Horticulturae, 22, 23–32.Google Scholar
  183. Lebeda, A. (1985a). Differences in resistance of wild Lactuca species to natural infection of lettuce powdery mildew (Erysiphe cichoracearum). Euphytica, 34, 521–523.Google Scholar
  184. Lebeda, A. (1985b). Susceptibility of some lettuce cultivars to natural infection by powdery mildew. Tests of Agrochemicals and Cultivars No. 6 (Annals of Applied Biology 106, Suppl.), 158–159.Google Scholar
  185. Lebeda, A. (1985c). Auftreten der Natürlichen Infektion durch den Echten Mehltau (Erysiphe cichoracearum) bei der Gattung Lactuca in der Tschechoslowakei. Acta Phytopathologica Academiae Scientarum Hungaricae, 20, 149–162.Google Scholar
  186. Lebeda, A. (1986). Specificity of interactions between wild Lactuca spp. and Bremia lactucae isolates from Lactuca serriola. Journal of Phytopathology, 117, 54–64.Google Scholar
  187. Lebeda, A. (1990). The location of sources of field resistance to Bremia lactucae in wild Lactuca species. Plant Breeding, 105, 75–77.Google Scholar
  188. Lebeda, A. (1994). Evaluation of wild Lactuca species for resistance of natural infection of powdery mildew (Erysiphe cichoracearum). Genetic Resources and Crop Evolution, 41, 55–57.Google Scholar
  189. Lebeda, A., & Astley, D. (1999). World genetic resources of Lactuca spp., their taxonomy and biodiversity, In A. Lebeda, & E. Křístková (Eds.), Eucarpia Leafy Vegetables99, Proceedings of the Eucarpia Meeting on Leafy Vegetables Genetics and Breeding. (pp. 81–94). Olomouc: Palacký University in Olomouc.Google Scholar
  190. Lebeda, A., & Blok, I. (1991). Race-specific resistance genes to Bremia lactucae in new Czechoslovak lettuce cultivars and location of resistance in a Lactuca serriola × Lactuca sativa hybrid. Archiv für Phytopathologie und Pflanzenschutz, 27, 65–72.Google Scholar
  191. Lebeda, A., & Boukema, I. W. (2001). Leafy vegetables genetic resources. In L. Maggioni, & O. Spellman (Eds.), Report of a Network Coordinating Group on Vegatables; Ad hoc meeting, 2627 May 2000, Vila Real, Portugal. (pp. 48–57). Rome: IPGRI.Google Scholar
  192. Lebeda, A., & Boukema, I. W. (2005). Ad Hoc meeting on leafy vegetables. In G. Thomas, D. Astley, I. Boukema, M. C. Daunay, A. Del Greco, M. J. Diez, W. van Dooijeweert, J. Keller, T. Kotlinska, A. Lebeda, E. Lipman, L. Maggioni, & E. Rosa (Eds.), Report of a Vegetables Network (pp. 82–94). Joint meeting with and ad hoc group on leafy vegetables, 22–24 May 2003. Skierniewice: International Plant Genetic Resources Institute.Google Scholar
  193. Lebeda, A., Doležalová, I., & Astley, D. (2004a). Representation of wild Lactuca spp. (Asteraceae, Lactuceae) in world genebank collections. Genetic Resources and Crop Evolution, 51, 167–174.Google Scholar
  194. Lebeda, A., Doležalová, I., Feráková, V., & Astley, D. (2004b). Geographical distribution of wild Lactuca spp. (Asteraceae, Lactuceae). Botanical Reviews, 70, 328–356.Google Scholar
  195. Lebeda, A., Doležalová, I., Janeček, J. & Gasmanová, N. (2004c). Differences in relative DNA content od Lactuca serriola germplasm collected in Europe. In Summaries and Program, 17th International lettuce and leafy vegetable conference, 28–31 August 2004, Sandman Hotel, Montreal-Longueuil, Agriculture and Applied Food, Canada, Montreal, pp. 29–30.Google Scholar
  196. Lebeda, A., Doležalová, I., Kitner, M., Novotná, A., Šmachová, P., & Widrlechner, M. P. (2011). North American continent-a new source of wild Lactuca spp. germplasm variability for future lettuce breeding. Acta Horticulturae, 918, 475–482.Google Scholar
  197. Lebeda, A., Doležalová, I., Křístková, E., Dehmer, K. J., Astley, D., van de Wiel, C. C. M., et al. (2007a). Acquisition and ecological characterization of Lactuca serriola L. germplasm collected in the Czech Republic, Germany, the Netherlands and United Kingdom. Genetic Resources and Crop Evolution, 54, 555–562.Google Scholar
  198. Lebeda, A., Doležalová, I., Křístková, E., Kitner, M., Petrželová, I., Mieslerová, B., et al. (2009a). Wild Lactuca germplasm for lettuce breeding: recent status, gaps and challenges. Euphytica, 170, 15–34.Google Scholar
  199. Lebeda, A., Doležalová, I., Křístková, E., & Mieslerová, B. (2001b). Biodiversity and ecogeography of wild Lactuca spp. in some European countries. Genetic Resources and Crop Evolution, 48, 153–164.Google Scholar
  200. Lebeda, A., Doležalová, I., Křístková, E., Mieslerová, B., Kitner, M., Navrátilová, B., Duchoslav, M., Havránek, P., & Vondráková, D. (2007b). Germplasm collections of crop wild relatives – research, study and use on the Department of Botany, Palacký University in Olomouc (Czech Republic). In P. Hauptvogel, D. Benediková, R. Hauptvogel (Eds.), Plant Gentic Resources and their Exploitation in the Plant Breeding for Food and Agriculture, Book of abstracts, 18 th Eucarpia Genetic Resources Section Meeting. (pp. 94–95). Piešťany: NP print s.r.o. Piešťany.Google Scholar
  201. Lebeda, A., Doležalová, I., & Novotná, A. (2012a). Wild and weedy Lactuca species, their distribution, ecogeography and ecobiology in USA and Canada. Genetic Resources and Crop Evolution, 59, 1805–1822.Google Scholar
  202. Lebeda, A., Kitner, M., Křístková, E., Doležalová, I., & Beharav, A. (2012b). Genetic polymorphism in Lactuca aculeata populations and occurrence of natural putative hybrids between L. aculeata and L. serriola. Biochemical Systematics and Ecology, 42, 113–123.Google Scholar
  203. Lebeda, A., Kitner, M., Dziechciarková, M., Doležalová, I., Křístková, E., & Lindhout, P. (2009b). An insight into the genetic polymorphism among European populations of Lactuca serriola assessed by AFLP. Biochemical Systematics and Ecology, 37, 597–608.Google Scholar
  204. Lebeda, A., & Mieslerová, B. (2011). Taxonomy, distribution and biology of lettuce powdery mildew (Golovinomyces cichoracearum sensu stricto). Plant Pathology, 60, 400–415.Google Scholar
  205. Lebeda A., Mieslerová, B., Petrželová, I., & Korbelová, P. (2013). Host specificity and virulence variation in populations of lettuce powdery mildew pathogen (Golovinomyces cichoracearum s. str.) from prickly lettuce (Lactuca serriola). Mycological Progress, 12, 533–545.Google Scholar
  206. Lebeda, A., Mieslerová, B., Petrželová, I., Korbelová, P., & Česneková, E. (2012c). Patterns of virulence variation in the interaction between Lactuca spp. and lettuce powdery mildew (Golovinomyces cichoracearum). Fungal Ecology, 5, 670–682.Google Scholar
  207. Lebeda, A., & Petrželová, I. (2004). Variation and distribution of virulence phenotypes of Bremia lactucae in natural populations of Lactuca serriola. Plant Pathology, 53, 316–324.Google Scholar
  208. Lebeda, A., Petrželová, I., & Maryška, Z. (2008a). Structure and variation in the wild-plant pathosystem: Lactuca serriolaBremia lactucae. European Journal of Plant Pathology, 122, 127–146.Google Scholar
  209. Lebeda, A., & Pink, D. A. C. (1998). Histological aspects of the response of wild Lactuca spp. and their hybrids, with L. sativa to lettuce downy mildew (Bremia lactucae). Plant Pathology, 47, 723–736.Google Scholar
  210. Lebeda, A., Pink, D. A. C., & Astley, D. (2002). Aspects of the interactions between wild Lactuca spp. and related genera and lettuce downy mildew (Bremia lactucae). In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 85–117). Dordrecht: Kluwer.Google Scholar
  211. Lebeda, A., Ryder, E. J., Grube, R., Doležalová, I., & Křístková, E. (2007c). Lettuce (Asteraceae; Lactuca spp.). In R. J. Singh (Ed.), Genetic resources, chromosome engineering, and crop improvement, Vol. 3, Vegetable crops (pp. 377–472). Boca Raton: CRC Press, Taylor and Francis Group.Google Scholar
  212. Lebeda, A., Sedlářová, M., Lynn, J., & Pink, D. A. C. (2006). Phenotypic and histological expression of different genetic backgrounds in interactions between lettuce, wild Lactuca spp., L. sativa × L. serriola hybrids and Bremia lactucae. European Journal of Plant Pathology, 115, 431–441.Google Scholar
  213. Lebeda, A., Sedlářová, M., Petřivalský, M., & Prokopová, J. (2008b). Diversity of defence mechanisms in plant-oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. European Journal of Plant Pathology, 122, 71–89.Google Scholar
  214. Lebeda, A., & Zinkernagel, V. (2003a). Characterization of new highly virulent German isolates of Bremia lactucae and efficiency of resistance in wild Lactuca spp. germplasm. Journal of Phytopathology, 151, 274–282.Google Scholar
  215. Lebeda, A., & Zinkernagel, V. (2003b). Evolution and distribution of virulence in the German population of Bremia lactucae. Plant Pathology, 52, 41–51.Google Scholar
  216. Ligoxigakis, E. K., Vakalounakis, D. J., & Thanassoulopoulos, C. C. (2002). Weed hosts of Verticillium dahliae in Crete: susceptibility, symptomatoology and significance. Phytoparasitica, 30, 511–518.Google Scholar
  217. Lindqvist, K. (1960). Cytogenetic studies in the Serriola group of Lactuca. Hereditas, 46, 75–151.Google Scholar
  218. Liu, Z. B. (2004). Distribution and population development of Nasonovia ribisnigri (Homoptera: Aphididae) in iceberg lettuce. Journal of Economic Entomology, 97, 883–890.PubMedGoogle Scholar
  219. Liu, Y. B., & McCreight, J. D. (2006). Responses of Nasonovia ribisnigri (Homoptera: Aphididae) to susceptible and resistant lettuce. Journal of Economic Entomology, 99, 972–978.PubMedGoogle Scholar
  220. Lu, Q. Y., Baker, J., & Preston, C. (2007). The spread of resistence to acetolactate synthase inhibiting herbicides in a wind borne, self-pollinated weed species, Lactuca serriola L. Theoretical and Applied Genetics, 115, 443–450.PubMedGoogle Scholar
  221. MacGowan, J. B. (1982). Needle nematodes: Longidorus spp.. Nematology Circular No. 89. Florida Department of Agriculture and Consumer Services, Contribution No. 250.Google Scholar
  222. Machado, A. C. Z., & Inomoto, M. M. (2001). Host status of eighteen vegetable crops for Pratylenchus brachyurus. Nematropica, 31, 259–265.Google Scholar
  223. Mackenzie, J. R., & Vernon, R. S. (1988). Sampling for distribution of the lettuce aphid, Nasonovia ribisnigri (Homoptera: Aphididae), in fields and within heads. Journal of the Entomological Society of British Columbia, 85, 10–14.Google Scholar
  224. Maisonneuve, B. (2003). Lactuca virosa, a source of disease resistance genes in lettuce breeding: results and difficulties for gene introgression. In Th. J. L. van Hintum, A. Lebeda, D. Pink, & J.W. Schur (Eds.), Eucarpia Leafy Vegetables Conference (pp. 61–67). Noordwijkerhout, Netherlands, 19–23 May 2003.Google Scholar
  225. Maisonneuve, B., Bellec, Y., Souche, S., & Lot, H. (1999). New resistance against downy mildew and lettuce mosaic potyvirus in wild Lactuca spp. In A. Lebeda & E. Křístková (Eds.), Eucarpia leafy vegetables ′99 (pp. 191–197). Olomouc: Palacky University, Olomouc.Google Scholar
  226. Maisonneuve, B., Chupeau, M. C., Bellec, Y., & Chupeau, Y. (1995). Sexual and somatic hybridization in the genus Lactuca. Euphytica, 85, 281–285.Google Scholar
  227. Maisonneuve, B., Chovelon, V., & Lot, H. (1991). Inheritance of resistance to beet western yellows virus in Lactuca virosa L. HortScience, 26, 1543–1545.Google Scholar
  228. Maluf, W. R., Azevedo, S. M., Gomes, L. A. A., & de Oliveira, A. C. B. (2002). Inheritance of resistance to the root-knot nematode Meloidogyne javanica in lettuce. Genetics and Molecular Research, 1, 64–71.PubMedGoogle Scholar
  229. Mani, A., Al Hinai, M. S., & Handoo, Z. A. (1997). Occurrence, population density, and distribution of root-lesion nematodes, Pratylenchus spp., in the Sultanate of Oman. Nematropica, 27, 209–219.Google Scholar
  230. Martin, C., Schoen, L., Rufingier, C., & Pasteur, N. (1996). A contribution to the integrated pest management of the aphid Nasonovia ribisnigri in salad crops. Bulletin OILB-SROP, 19, 98–101.Google Scholar
  231. Matheron, M. E., & Koike, S. T. (2003). First report of fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae in Arizona. Plant Disease, 87, 1265.Google Scholar
  232. Matoba, H., Mizutani, T., Nagano, K., Hoshu, Y., & Uchiyama, H. (2007). Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization. Hereditas, 144, 235–243.PubMedGoogle Scholar
  233. Matsumoto, E. (1991). Interspecific somatic hybridization between lettuce (Lactuca sativa) and wild species L. virosa. Plant Cell Reports, 9, 531–534.PubMedGoogle Scholar
  234. Matsuura, K., Kanto, T., Uzuhashi, S., & Kakishima, M. (2010). Pythium wilt of lettuce caused by Pythium uncinulatum in Japan. Journal of General Plant Pathology, 76, 320–323.Google Scholar
  235. Matta, A. (1965). Una malattia della lattuga prodotta da una nuova specie di Pythium. Phytopathologia Mediterranea, 4, 48–53.Google Scholar
  236. Matuo, T., & Matahashi, S. (1967). On Fusarium oxysporum f. sp. lactucae causing root rot of lettuce. Transactions of Mycological Society of Japan, 32, 13–15.Google Scholar
  237. Maxted, N., & Kell, S. P. (2008). Linking in-situ and ex-situ conservation with use of crop wild relatives. In N. Maxted, B. V. Ford–Lloyd, S. P. Kell, J. M. Iriondo, E. Dulloo, & J. Turok (Eds.), Crop wild relative conservation and use (pp. 450–470). Wallingford: CABI.Google Scholar
  238. Maxted, N., Kell, S. P., & Ford-Lloyd, B. V. (2008). Crop wild relative conservation and use: establishing the context. In N. Maxted, B. V. Ford–Lloyd, S. P. Kell, J. M. Iriondo, E. Dulloo, & J. Turok (Eds.), Crop wild relative conservation and use (pp. 3–30). Wallingford: CABI.Google Scholar
  239. Mazier, M., German-Retana, S., Flamain, F., Dubois, V., Botton, E., Sarnette, V., et al. (2003). A simple and efficient method for testing Lettuce mosaic virus resistence in in vitro cultivated lettuce. Journal of Virological Methods, 116, 123–131.Google Scholar
  240. McCabe, M. S., Garratt, L. C., Schepers, F., Jordi, W., Stoopen, G. M., Davelaar, F., et al. (2001). Effects of P-SAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiology, 127, 505–516.PubMedCentralPubMedGoogle Scholar
  241. McCabe, M. S., Schepers, F., van der Arend, A., Mohapatra, U., de Laat, A. M. M., Power, J. B., et al. (1999). Increased stable inheritance of herbicide resistance in transgenic lettuce carrying a petE promoter-bar gene compared with a CaMV 35S-bar gene. Theoretical and Applied Genetics, 99, 587–592.PubMedGoogle Scholar
  242. McCreight, J. D. (2008). Potential sources of genetic resistance in Lactuca spp. the lettuce aphid Nasanovia ribisnigri (Mosely) (Homoptera: Aphididae). Hortscience, 43, 1355–1358.Google Scholar
  243. McCreight, J. D., & Liu, Y. B. (2012). Resistance to lettuce aphid (Nasonovia ribisnigri) biotype 0 in wild lettuce accessions PI 491093 and PI 274378. Hortscience, 47, 179–184.Google Scholar
  244. McDougall, S., & Troldahl, R. (2010). Current lettuce aphid resistant varieties available in Australia. NSW Department of Primary Industries. <>[last accessed 2013-04-27]
  245. McGuire, P. E., Ryder, E. J., Michelmore, R. W., Clark, R. L., Antle, R., Emery, G., Hannan, R. M., Kesseli, R. V., Kurtz, E. A., Ochoa, O., Rubatzky, V. E., & Waycott, W. (1993). Genetic Resources of Lettuce and Lactuca species in California. An Assessment of the USDA and UC Collections and Recommendations for Long-term Security. Report No. 12. Davis: University of California, Genetic Resources Conservation Program.Google Scholar
  246. McHale, K. L., Truco, J. M., Kozik, A., Wroblewski, T., Ochoa, E. O., Lahre, A. K., et al. (2009). The genomic architecture of disease resistance in lettuce. Theoretical and Applied Genetics, 118, 565–580.PubMedGoogle Scholar
  247. Michalska, K., & Kisiel, W. (2009). Root constituents of Lactuca sibirica and a comparison of metabolite profiles of L. sibirica and L. tatarica. Acta Societatis Botanicorum Poloniae, 78, 25–27.Google Scholar
  248. Michalska, K., & Kisiel, W. (2010). Sesquiterpene lactones from roots of Lactuca aculeata. Biochemical Systematics and Ecology, 38, 830–832.Google Scholar
  249. Michalska, K., Stojakowska, A., Malarz, J., Doležalová, I., Lebeda, A., & Kisiel, W. (2009). Systematic implication of sesquiterpene lactones in Lactuca species. Biochemical Systematics and Ecology, 37, 174–179.Google Scholar
  250. Michelmore, R. W. (2012). California leafy greens research program. <> [last accessed 2013-02-01]
  251. Michelmore, R. W., & Eash, J. A. (1986). Lettuce. In Handbook of plant cell culture, vol. 4 (pp. 512–551). New York: Macmillan.Google Scholar
  252. Michelmore, R. W., Ochoa, O. E., Truco, M. J., Grube, R., & Gates, R. (2005). Breeding crisphead lettuce. USDA-ARS. California Lettuce Research Board Annual Report (pp. 68–78), 2004–2005.Google Scholar
  253. Mikel, M. A. (2007). Genealogy of contemporary North American lettuce. HortScience, 42, 489–493.Google Scholar
  254. Mikel, M. A. (2013). Genetic composition of contemporary proprietary U.S. lettuce (Lactuca sativa L.) cultivars. Genetic Resources and Crop Evolution, 60, 89–96.Google Scholar
  255. Miller, N. J., Birley, A. J., Overall, A. D. J., & Tatchell, G. M. (2003). Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage. Heredity, 91(3), 217–223.Google Scholar
  256. Miller, N. J., Kift, N. B., & Tatchell, G. M. (2008). Host-associated populations in the lettuce root aphid, Pemphigus bursarius (L.). Heredity, 94, 556–564.Google Scholar
  257. Mizutani, T., Liu, X. J., Tashiro, Y., Miyazaki, S., & Shimazaki, K. (1989). Plant regeneration and cell fusion of protoplasts from lettuce cultivars and related wild species in Japan. Bulletin of Faculty of Agriculture, Saga University, 67, 109–118.Google Scholar
  258. Mohapatra, U., McCabe, M. S., Power, J. B., Schepers, F., Van der Arend, A., & Davey, M. R. (1999). Expression of the bar gene confers herbicide resistance in transgenic lettuce. Transgenic Research, 8, 33–44.Google Scholar
  259. Mojtahedi, H., Boydson, R. A., Thomas, P. E., Crosslin, J. M., Santo, G. S., Roga, E., et al. (2003). Weed hosts of Paratrichodorus allius and tobacco rattle virus in the Pacific Northwest. American Journal of potato Research, 80, 379–385.Google Scholar
  260. Moretti, F., Cotroneo, A., & Mancini, G. (1981). The reproduction and pathology of Pratylenchus penetrans on some varieties of lettuce. Revue de Nématologie, 4, 271–276.Google Scholar
  261. Mou, B. (2008). Lettuce. In J. Prohens & F. Nuez (Eds.), Handbook of plant breeding. Vegetables I. Asteraceae, brassicaceae, chenopodiaceae, and cucurbitaceae (pp. 75–116). New York: Springer Science.Google Scholar
  262. Mou, B. (2011a). Green leaf lettuce breeding lines with resistance to corky root, 06–831 and 06–833. HortScience, 46, 1324–1325.Google Scholar
  263. Mou, B. (2011b). Mutations in lettuce improvement. International Journal of Plant Genomics, Volume 2011, Article ID 723518, doi:  10.1155/2011/723518.
  264. Mou, B., & Bull, C. (2004). Screening lettuce germplasm for new sources of resistance to corky root. Journal of the American Society for Horticultural Science, 129, 712–718.Google Scholar
  265. Mou, B., Hayes, R. J., & Ryder, E. J. (2007). Crisphead lettuce breeding lines with resistance to corky root and lettuce mosaic virus. HortScience, 42, 701–703.Google Scholar
  266. Mou, B., & Liu, Y. (2003). Leafminer resistance in lettuce. Hortscience, 38, 570–572.Google Scholar
  267. Mou, B., & Liu, Y. (2004). Host plant resistance to leafminers in lettuce. Journal of the American Society for Horticultural Science, 129, 383–388.Google Scholar
  268. Mou, B., & Ryder, E. J. (2010). MU06-857, a green leaf lettuce breeding line with resistance to leafminer and lettuce mosaic virus. Hortscience, 45, 666–667.Google Scholar
  269. Navarro, J. A., Torok, V. A., Vetten, H. J., & Pallás, V. (2005). Genetic variability in the coat protein genes of lettuce big-vein associated virus and Mirafiori lettuce big-vein virus. Archives for Virology, 150, 681–694.Google Scholar
  270. Netzer, D., Globerson, D., Weintal, C., & Elyassi, R. (1985). Sources and inheritance of resistance to Stemphylium leaf spot of lettuce. Euphytica, 34, 393–396.Google Scholar
  271. Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M. P., Mazier, M., Maisonneuve, B., et al. (2003). The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiology, 132, 1272–1282.PubMedCentralPubMedGoogle Scholar
  272. Novotná, A., Doležalová, I., Lebeda, A., Kršková, M., & Berka, T. (2011). Morphological variability of achenes of some European populations of Lactuca serriola L. Flora, 206, 473–483.Google Scholar
  273. Obermeier, C., Sears, J. L., Liu, H. Y., Schlueter, K. O., Ryder, E. J., Duffus, J. E., et al. (2001). Characterization of distinct tombusviruses that cause disease of lettuce and tomato in the western United States. Phytopathology, 91, 797–806.PubMedGoogle Scholar
  274. Ochoa, O., Delp, B., & Michelmore, R. W. (1987). Resistance in Lactuca spp. to Microdochium panattoniana (lettuce anthracnose). Euphytica, 36, 609–614.Google Scholar
  275. Okubara, P. A., Arroyo-Garcia, R., Shen, K. A., Mazier, M., Meyers, B. C., Ochoa, O. E., et al. (1997). A transgenic mutant of Lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance. Molecular Plant Microbe Interactions, 10, 970–977.PubMedGoogle Scholar
  276. Ökten, M. E. (1988). Some species of Tylenchidae (Tylenchida: Nematoda) from the Istanbul province. Türkiye Entomoloji Dergisi, 12, 209–214.Google Scholar
  277. Parella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C., & Marchoux, G. (2003). An update of the host range of Tomato spotted wilt virus. Journal of Plant Pathology, 85, 227–264.Google Scholar
  278. Pedroche, N. B., Villaneuva, L. M., & de Waele, D. (2012). Plant parasitic nematodes associated with semi-temperate vegetables in Benguet Province, Philippines. Archives of Phytopathology and Plant Protection, iFirst article 1–17.Google Scholar
  279. Peters, D., & Goldbach, R. (1998). An updated list of plant species susceptible to tospovirus. Wageningen Agricultural University, Section Virology, The Netherlands.Google Scholar
  280. Petrželová, I., & Lebeda, A. (2011). Distribution of race-specific resistance against Bremia lactucae in natural populations of Lactuca serriola. European Journal of Plant Pathology, 129, 233–253.Google Scholar
  281. Petrželová, I., Lebeda, A., & Beharav, A. (2011). Resistance to Bremia lactucae in natural populations of Lactuca saligna from some Middle Eastern countries and France. Annals of Applied Biology, 159, 442–455.Google Scholar
  282. Philis, J. (1995). An up-dated list of plant parasitic nematodes from Cyprus and their economic importance. Nematologia Mediterranea, 23, 307–314.Google Scholar
  283. Pileggi, M., Mielniczki Pereira, A. A., dos Santos Silva, J., Veiga Pileggi, S. A., & Verma, D. P. S. (2001). An improved method for transformation of lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance. Brazilian Archives of Biology and Technology, 44, 191–196.Google Scholar
  284. Pink, D. A. C. (2002). Strategies using genes for non-durable resistance. Euphytica, 124, 227–236.Google Scholar
  285. Pink, D. A. C., & Keane, E. M. (1993). Lettuce: Lactuca sativa L. In G. Kalloo & B. O. Bergh (Eds.), Genetic improvement of vegetable crops (pp. 543–571). Oxford: Pergamon Press.Google Scholar
  286. Pink, D. A. C., Kostova, D., & Walkey, D. G. A. (1992a). Differentiation of pathotypes of lettuce mosaic virus. Plant Pathology, 41, 5–12.Google Scholar
  287. Pink, D. A. C., Lot, H., & Johnson, R. (1992b). Novel pathotypes of lettuce mosaic virus-breakdown of a durable resistance. Euphytica, 63, 169–174.Google Scholar
  288. Pink, D. A. C., & Puddephat, I. J. (1999). Deployment of disease resistance genes by plant transformation – a “mix and match” approach. Trends in Plant Science, 4, 71–75.PubMedGoogle Scholar
  289. Pniewski, T. (2013). The twenty-year story of a plant-based vaccine against hepatitis B: stagnation or promising prospects? International Journal of Molecular Sciences, 14, 1978–1998.PubMedCentralPubMedGoogle Scholar
  290. Provvidenti, R., Robinson, R. W., & Shail, J. W. (1980). A source of resistance to a strain of cucumber mosaic virus in Lactuca saligna L. HortScience, 15, 528–529.Google Scholar
  291. Purdy, L. H. (1979). Sclerotinia sclerotiorum: history, disease and symptomatology, host range, geographical distribution and impact. Phytopathology, 69, 875–880.Google Scholar
  292. Radewald, J. D., Mowbray, P. G., Paulus, A. O., Shibuya, F., & Rible, J. M. (1969a). Preplant soil fumigation for California head lettuce. Plant Disease Reporter, 53, 385–389.Google Scholar
  293. Radewald, J. D., Osgood, J. W., Mayberry, K. S., Paulus, A. O., & Shibuya, F. (1969b). Longidorus africanus a pathogen of head lettuce in the Imperial Valley of southern California. Plant Disease Reporter, 53, 381–384.Google Scholar
  294. Radewald, J. D., Osgood, J. W., Mayberry, K. S., Paulus, A. O., Otto, H. W., & Shibuya, F. (1969c). Longidorus africanus merny; nematode found pathogen of imperial lettuce. California Agriculture, 23, 10–13.Google Scholar
  295. Raid, R. N. (1997). Stemphylium leaf spot. In R. M. Davis, K. V. Subbarao, R. N. Raid, & E. A. Kurtz (Eds.), Compendium of lettuce diseases (pp. 25–26). St. Paul: APS Press.Google Scholar
  296. Rauscher, G., & Simko, I. (2013). Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes. BMC Plant Biology, 13, 11.Google Scholar
  297. Ray, D. T., McCreight, J. D., McGrady, J. J., & Brown, J. K. (1989). Resistance in cultivated and wild lettuce to lettuce infectious yellows virus. Vegetable Report, 78, 73–77.Google Scholar
  298. Rees, S., & Harborne, J. (1984). Flavonoids and other phenolics of Cichorium and related members of the Lactuceae (Compositae). Botanical Journal of the Linnean Society, 89, 313–319.Google Scholar
  299. Reinink, K. (1999). Lettuce resistance breeding. In A. Lebeda & E. Křístková (Eds.), Eucarpia leafy vegetables ′99. Proceedings of the eucarpia meeting on leafy vegetables genetics and breeding (pp. 139–147). Olomouc: Palacký University in Olomouc.Google Scholar
  300. Reinink, K., & Dieleman, F. L. (1989). Comparison of sources of resistance to leaf aphids in lettuce (Lactuca sativa L.). Euphytica, 40, 21–29.Google Scholar
  301. Revers, F., Lot, H., Souche, S., Le Gall, O., Candresse, T., & Dunez, J. (1997a). Biological and molecular variability of lettuce mosaic virus isolates. Phytopathology, 87, 397–403.PubMedGoogle Scholar
  302. Revers, F., Yang, S. J., Walter, J., Souche, S., Lot, H., Le Gall, O., et al. (1997b). Comparison of the complete nucleotide sequences of two isolates of lettuce mosaic virus differing in their biological properties. Virus Research, 47, 167–177.PubMedGoogle Scholar
  303. Riar, D. S., Rustgi, S., Burke, I. C., Gill, K. S., & Yenish, J. P. (2011). EST-SSR development from 5 Lactuca species and their use in studying genetic diversity among L. serriola biotypes. Journal of Heredity, 102, 17–28.PubMedGoogle Scholar
  304. Rich, J., Brito, J., Ferrell, J., & Kaur, R. (2010). Weed hosts of root-knot nematodes common to Florida. University of Florida, IFAS, ENY-060 <>. [last accessed 2013-02-01]
  305. Roggero, P., Ciuffo, M., Vaira, A. M., Accotto, G. P., Masenka, V., & Milne, R. G. (2000). An Ophiovirus isolated from lettuce with big-vein symptoms. Archives of Virology, 145, 2629–2642.PubMedGoogle Scholar
  306. Roossinck, M. J. (2002). Evolutionary history of Cucumber mosaic virus deduced by phylogenetic analyses. Journal of Virology, 76, 3382–3387.PubMedCentralPubMedGoogle Scholar
  307. Roossinck, M. J., Bujarski, J., Ding, S. W., Hajimorad, R., Hanada, K., Scott, S., & Tousignant, M. (1999). Family Bromoviridae. In M. H. V. van Regenmortel, C. M. Fauquet, & D. H. L. Bishop (Eds.), Virus Taxonomy (pp. 923–935). Seventh Report of the International Committee on Taxonomy of Viruses. San Diego, California: Academic Press.Google Scholar
  308. Ryder, E. J. (1970). Inheritance of resistance to common lettuce mosaic. Journal of the American Society of Horticultural Science, 95, 378–379.Google Scholar
  309. Ryder, E. J. (1999). Lettuce, endive and cichory. Wallingford: CABI Publishing.Google Scholar
  310. Ryder, E. J. (2001). Current and future issues in lettuce breeding. In J. Janick (Ed.), Plant breeding reviews (Vol. 20, pp. 105–134). San Francisco: Willey.Google Scholar
  311. Ryder, E. (2002). A mild systemic reaction to lettuce mosaic virus in lettuce: inheritance and interaction with an allele for resistance. Journal of the American Society of Horticultural Science, 127, 814–818.Google Scholar
  312. Ryder, E. J., Grube, R. C., Subbarao, K. V., & Koike S. T. (2003). Breeding for resistance to diseases in lettuce: successes and challenges. In Th.J.L. van Hintum, A. Lebeda, D. A. Pink, J. W. Schut (Eds.), Eucarpia Leafy Vegetables 2003, Proceedings of the Eucarpia Meeting on Leafy Vegetables Genetics and Breeding (pp. 25–30). Wageningen, The Netherlands: Centre for Genetic Resources (CGN).Google Scholar
  313. Ryder, E. J., & Robinson, B. J. (1995). Big-vein resistance in lettuce – identifying, selecting, and testing resistant cultivars and breeding. Journal of the American Society for Horticultural Science, 120, 741–746.Google Scholar
  314. Sahin, F., & Miller, S. A. (1997). Identification of the bacterial leaf spot pathogen of lettuce, Xanthomonas campestris pv. vitians, in Ohio, and assessment of cultivar resistance and seed treatment. Plant Disease, 81, 1443–1446.Google Scholar
  315. Sangün, O., & Satar, S. (2012). Aphids (Hemiptera: Aphididae) on lettuce in the Eastern Mediterranean Region of Turkey: incidence, population fluctuations, and flight activities. Turkiye Entomoloji Dergisi - Turkish Journal of Entomology, 36, 443–454.Google Scholar
  316. Sauer, C. (2008). Salatanbau-noch kein genereller Durchbruch der Nasonovia-Resistenz. Auszug aus Gemusebau-Info 10/2008. - Agroscope Changins-Wädenswil ACW. <> [last accessed 2013-04-27]
  317. Schwember, A. R., & Bradford, K. J. (2010). Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. Journal of Experimental Botany, 61, 4423–4436.PubMedGoogle Scholar
  318. Scott, J. C., Kirkpatrick, S. C., & Gordon, T. R. (2010). Variation in susceptibility of lettuce cultivars to fusarium wilt caused by Fusarium oxysporum f.sp. lactucae. Plant Pathology, 59, 139–146.Google Scholar
  319. Sequiera, L. (1970). Resistance to corky root rot in lettuce. Plant Disease Reports, 54, 754–758.Google Scholar
  320. Sequiera, L. (1978). Two root rot resistant varieties of head lettuce. Ohio Agricultural Experimental Research Station Bulletin, 359, 197–214.Google Scholar
  321. Sessa, R., Bennett, M. H., Lewin, M. J., Mansfield, J. W., & Beale, M. H. (2000). Metabolite profiling of sesquiterpene lactones from Lactuca species. Journal of Biological Chemistry, 275, 26877–26884.PubMedGoogle Scholar
  322. Shin, H. D., Jee, H. J., & Shin, C. K. (2006). First report of powdery mildew caused by Sphaerotheca fusca on Lactuca sativa in Korea. Plant Pathology, 55, 814.Google Scholar
  323. Shukla, D. D., Ward, C. W., & Brunt, A. A. (1994). The potyviridae. Wallingford: CAB International.Google Scholar
  324. Sicard, D., Woo, S. S., Arroyo-Garcia, R., Ocho, O., Nguyen, D., Korol, A., et al. (1999). Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp. Theoretical and Applied Genetics, 99, 405–418.PubMedGoogle Scholar
  325. Sikora, R. A., & Fernández, E. (2005). Nematode parasites of vegetables. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (2nd ed., pp. 319–392). Wallingford: CABI Publishing.Google Scholar
  326. Simko, I. (2009). Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). Journal of Heredity, 100, 256–262.PubMedGoogle Scholar
  327. Simko, I., Hayes, R. J., Truco, M. J., & Michelmore, R. W. (2011). Mapping a dominant negative mutation for triforine sensitivity in lettuce and its use as a selectable marker for detecting hybrids. Euphytica, 182, 157–166.Google Scholar
  328. Simko, I., & Hu, J. (2008). Population structure in cultivated lettuce and its impact on association mapping. Journal of the American Society for Horticultural Science, 133, 61–68.Google Scholar
  329. Simko, I., Pechenick, D. A., McHale, L. K., Truco, M. J., Ochoa, O. E., Michelmore, R. W., et al. (2009). Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr1. BMC Plant Biology, 9, 135.PubMedCentralPubMedGoogle Scholar
  330. Simko, I., Pechenick, D. A., McHale, L. K., Truco, M. J., Ochoa, O. E., Michelmore, R. W., et al. (2010). Development of molecular markers for marker-assisted selection of dieback resistance in lettuce (L. sativa. Acta Horticulturae (ISHS), 859, 401–408.Google Scholar
  331. Sretenović-Rajičić, T., van Hintum, T. J. L., Lebeda, A., & Dehmer, K. (2008). Analysis of wild Lactuca accessions: conservation and identification of redundancy. Plant Genetic Resources: Characterization and Utilization, 6, 153–163.Google Scholar
  332. Stebbins, G. L. (1957). Self-fertilization and population variability in the higher plants. American Naturalist, 91, 418–428.Google Scholar
  333. Stevens, M., Freeman, B., Liu, H., Herrbach, E., & Lemaire, O. (2005). Beet poleroviruses: close friends or distant relatives? Molecular Plant Pathology, 6, 1–9.PubMedGoogle Scholar
  334. Stoetzel, M. B. (1985). Eucarazzia elegans (Ferrari) an aphid new to the Western hemisphere, with archival data (Homoptera: Aphididae). Proceedings of the Entomological Society of Washington, 87, 44–48.Google Scholar
  335. Stoffel, K., van Leeuwen, H., Kozik, A., Caldwell, D., Ashrafi, H., Cui, X., et al. (2012). Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.). BMC Genomics, 13, 185.PubMedCentralPubMedGoogle Scholar
  336. Stubbs, L. L., & Grogan, R. G. (1963). Necrotic yellows: a newly recognised virus disease of lettuce. Australian Journal of Agricultural Research, 14, 439–459.Google Scholar
  337. Subbarao, K. V. (1998). Progress towards integrated management of lettuce drop. Plant Disease, 80, 28–33.Google Scholar
  338. Subbarao, K. V., Hubbard, J. C., Greathead, A., & Spencer, G. A. (1997). Verticillium wilt. In R. M. Davis, K. V. Subbarao, R. N. Raid, & E. A. Kurtz (Eds.), Compendium of lettuce diseases (pp. 26–27). St. Paul: American Phytopathological Society.Google Scholar
  339. Syed, H. N., Sørensen, P. A., Antonise, R., van de Wiel, C., van der Linden, G. C., van ‘t Westende, W., et al. (2006). A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theoretical and Applied Genetics, 112, 517–527.PubMedGoogle Scholar
  340. Takada, K., Watanabe, S., Sano, T., Ma, B., Kamada, H., & Ezura, H. (2007). Heterologous expression of the mutated melon ethylene receptor gene Cm-ERS1/H70A produces stable sterility in transgenic lettuce (Lactuca sativa). Journal of Plant Physiology, 164, 514–520.PubMedGoogle Scholar
  341. Tamaki, H., Robinson, R. W., Anderson, J. L., & Stoewsand, G. S. (1995). Sesquiterpene lactones in virus-resistant lettuce. Journal of Agricultural and Food Chemistry, 43, 6–8.Google Scholar
  342. Thabuis, A. P. P., Teekens, K. C., & van Herwijnen, Z. O. (2011). Lettuce that is resistant to the lettuce aphid Nasonovia ribisnigri biotype 1. World Intellectual Property Organization. PCT/EP2010/067588.Google Scholar
  343. Thompson, R. C., & Ryder, E. J. (1961). Descriptions and pedigrees of nine varieties of lettuce. U.S. Department of Agriculture Technical Bulletin, 1244.Google Scholar
  344. Torres, A. C., Nagata, R. T., Ferl, R. J., Bewick, T. A., & Cantliffe, D. J. (1999). In vitro assay selection of glyphosate resistance in lettuce. Journal of the American Society for Horticultural Science, 124, 86–89.Google Scholar
  345. Tortolero, O., & Sequeira, L. (1978). A vascular wilt and leaf blight disease of lettuce in Wisconsin caused by a new strain of Pythium tracheiphilum. Plant Disease Reporter, 62, 616–620.Google Scholar
  346. Toussaint, V., Benoit, D. L., & Carisse, O. (2012). Potential of weed species to serve as a reservoir for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Crop Protection, 41, 64–70.Google Scholar
  347. Truco, M. J., Antonise, R., Lavelle, D., Ochoa, O., Kozik, A., Witsenboer, H., et al. (2007). A high-density integrated genetic linkage map of lettuce (Lactuca spp.). Theoretical and Applied Genetics, 115, 735–746.PubMedGoogle Scholar
  348. Truco, M. J., Ashrafi, H., Kozik, A., van Leeuwen, H., Bowers, J., Chin Wo, S.R., Stoffel, K., Xu, H., Hill, T., Van Deynze, A., & Michelmore, R. (2013). An ultra high-density, transcript-based, genetic map of lettuce. G3: Genes, Genomes and Genetics (submitted)Google Scholar
  349. Tsuchiya, N., Fujinaga, M., Ogiso, H., Usui, T., & Tsukada, M. (2004). Resistance tests and genetic resources for breeding fusarium root rot resistant lettuce. Journal of Japanese Society of Horticultural Science, 73, 105–113.Google Scholar
  350. Usami, T., Itoh, M., Morii, S., Miyamoto, T., Kaneda, M., Ogawara, T., et al. (2012). Involvment of two different types of Verticillium dahliae in lettuce wilt in Ibaraki Prefecture, Japan. Journal of General Plant Pathology, 78, 348–352.Google Scholar
  351. Uwimana, B., d’Andrea, L. D., Felber, F., Hooftman, D. A., den Nijs, H. C. M., Smulders, M. J. M., et al. (2012a). A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (Lactuca sativa L.) and prickly lettuce (L. serriola L.) and the recent expansion of L. serriola in Europe. Molecular Ecology, 21, 2640–2654.PubMedGoogle Scholar
  352. Uwimana, B., Smulders, M. J., Hooftman, D. A., Hartman, Y., van Tienderen, P. H., Jansen, J., et al. (2012b). Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations. BMC Plant Biology, 12, 43.PubMedCentralPubMedGoogle Scholar
  353. Uwimana, B., Smulders, M. J., Hooftman, D. A., Hartman, Y., van Tienderen, P. H., Jansen, J., et al. (2012c). Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop-wild hybrids under drought, salinity and nutrient deficiency conditions. Theoretical and Applied Genetics, 125, 1097–1111.PubMedCentralPubMedGoogle Scholar
  354. van Bruggen, A. H. C. (1997). Corky root. In R. M. Davis, K. V. Subbarao, R. N. Raid, & E. A. Kurtz (Eds.), Compendium of lettuce diseases (pp. 28–29). St. Paul: APS Press.Google Scholar
  355. van der Arend, A. J. M., Ester, A., & Schijndel, J. T. V. (1999). Developing an aphid-resistant butterhead lettuce “Dynamite”. In A. Lebeda & E. Křístková (Eds.), EUCARPIA leafy vegetables′99 (pp. 149–157). Olomouc: Palacky University in Olomouc.Google Scholar
  356. van de Wiel, C., Arens, P., & Vosman, B. (1998). Microsatellite fingerprinting in lettuce (Lactuca sativa L.) and wild relatives. Plant Cell Reports, 17, 837–842.Google Scholar
  357. van de Wiel, C., Arens, P., & Vosman, B. (1999). Microsatellite retrieval in lettuce (Lactuca sativa L.). Genome, 42, 139–149.PubMedGoogle Scholar
  358. van de Wiel, C. C. M., Sretenović-Rajičić, T., van Treuren, R., Dehmer, K. J., van der Linden, C. G., & van Hintum, T. J. L. (2010). Distribution of genetic diversity in wild European populations of prickly lettuce (Lactuca serriola): implications for plant genetic resources management. Plant Genetic Resources: Characterization and Utilization, 8, 171–181.Google Scholar
  359. van Hintum, T. J. L. (2003). Molecular characterisation of a lettuce germplasm collection. In T. J. L. van Hintum, A. Lebeda, D. A. Pink, & J. W. Schut (Eds.), Eucarpia leafy vegetables 2003, proceedings of the eucarpia meeting on leafy vegetables genetics and breeding (pp. 19–21). Wageningen: Centre for Genetic Resources (CGN).Google Scholar
  360. van Hintum, Th. J. L. & Boukema, I. W. (1999). Genetic resources of leafy vegetables. In A. Lebeda, & E. Křístková (Eds.), Eucarpia Leafy Vegetables99, Proceedings of the Eucarpia Meeting on Leafy Vegetables Genetics and Breeding. (pp. 59–72). Olomouc: Palacký University in Olomouc.Google Scholar
  361. van Leeuwen, H., Stoffel, K., Kozik, A., Cui, X., Ashrafi, H., McHale, L., Lavelle, D., Wong, G., Chen, F., Truco, M. J., Van Deynze, A., & Michelmore, R. W. (2009). High-density mapping of the lettuce genome with SFP markers in over 15,000 unigenes. Plant and Animal Genome Conference XVII, San Diego, USA.Google Scholar
  362. van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. M., et al. (2000). Virus taxonomy: classification and nomenclature of viruses (7th report ICTV). San Diego: Academic.Google Scholar
  363. van Treuren, R., van der Arend, A. J. M., & Schut, J. W. (2013). Distribution of downy mildew (Bremia lactucae Regel) resistances in a genebank collection of lettuce and its wild relatives. Plant Genetic Resources: Characterization and Utilization, 11, 15–25.Google Scholar
  364. van Treuren, R., & van Hintum, T. J. L. (2009). Comparison of anonymous and targeted molecular markers for the estimation of genetic diversity in ex situ conserved Lactuca. Theoretical and Applied Genetics, 119, 1265–1279.PubMedCentralPubMedGoogle Scholar
  365. van Treuren, R., Coquin, P., & Lohwasser, U. (2011). Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb’s lettuce, rhubarb and rocket salad): composition and gaps. Genetic Resources and Crop Evolution, 59, 981–997.Google Scholar
  366. Vanstone, V. A., & Russ, M. H. (2001). Ability of weeds to host the root lesion nematodes Pratylenchus neglectus and P. thornei II*. Broad-leaf weeds. Australasian Plant Pathology, 30, 251–258.Google Scholar
  367. Vermeulen, A., Desprez, B., Lancelin, D., & Bannerot, H. (1994). Relationships among Cichorium species and related genera as determined by analysis of mitochondrial RFLPs. Theoretical and Applied Genetics, 88, 159–166.PubMedGoogle Scholar
  368. Viane, N. M., & Abawi, G. S. (1996). Damage threshold of Meloidogyne hapla to lettuce in organic soil. Journal of Nematology, 28, 537–545.Google Scholar
  369. Walkey, D. (1991). Applied plant virology (2nd ed.). London: Chapman and Hall.Google Scholar
  370. Waycott, W., Fort, S. B., Ryder, E. J., & Michelmore, R. W. (1999). Mapping morphological genes relative to molecular markers in lettuce (Lactuca sativa L.). Heredity, 82, 245–251.PubMedGoogle Scholar
  371. Wesolowska, A., Nikiforuk, A., Michalska, K., Kisiel, W., & Chojnacka-Wójcik, E. (2006). Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. Journal of Ethnofarmacology, 107, 254–258.Google Scholar
  372. Wetzel, T., Dietzgen, R. G., & Dale, J. L. (1994). Genomic organization of lettuce necrotic yellows rhabdovirus. Virology, 200, 401–412.PubMedGoogle Scholar
  373. Whipps, J. M., Budge, S. P., McClement, S., & Pink, D. A. C. (2002). A glasshouse cropping method for screening lettuce lines for resistance to Sclerotinia sclerotiorum. European Journal of Plant Pathology, 108, 373–378.Google Scholar
  374. Whitaker, T. W., Bohn, G. W., Welch, J. F., & Grogan, R. G. (1958). History and development of head lettuce resistant to downy mildew. Proceedings of the American Society for Horticultural Science, 72, 410–416.Google Scholar
  375. Wintermantel, W. M. (2004). Emergence of greenhouse whitefly (Trialeurodes vaporariorum) transmitted Criniviruses as threats to vegetable and fruit producion in North America. APSnet Features. Online. doi: 10.1094/APSnetFeature-2004-0604.Google Scholar
  376. Wintermantel, W. M., & Anchieta, A. G. (2012). The genome sequence of lettuce necrotic stunt virus indicates a close relationship to Moroccan pepper virus. Archiv of Virology, 157, 1407–1409.Google Scholar
  377. Wintermantel, W. M., Anchieta, A. G., Obermeier, C., & Wisler, G. C. (2003). Tombusvirus infection of lettuce is influenced by soil enviroment. Phytopathology, 93, 101.Google Scholar
  378. Witsenboer, H., Michelmore, R. W., & Vogel, J. (1997). Identification, genetic localization and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome, 40, 923–936.PubMedGoogle Scholar
  379. Yabuuchi, E., Kosako, Y., Naka, Y., Suzuki, S., & Yano, I. (1999). Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) Comb. Nov., Sphingomonas natatoria (Sly 1985) Comb Nov., Sphingomonas ursincola (Yurkov et al. 1997) Comb. Nov., and emendation of the genus Sphingomonas. Microbiology and Immunology, 43, 339–349.PubMedGoogle Scholar
  380. Yang, T. J., Jang, S. W., & Kim, W. B. (2007). Genetic relationships of Lactuca spp. revealed by RAPD, Inter-SSR, AFLP, and PCR-RFLP analyses. Journal of Crop Science and Biotechnology, 10, 29–34.Google Scholar
  381. Zhang, N. W., Lindhout, P., Niks, R. E., & Jeuken, M. J. W. (2009). Genetic dissection of Lactuca saligna nonhost resistance to downy mildew at various lettuce developmental stages. Plant Pathology, 58, 923–932.Google Scholar
  382. Zhang, L. Y., Zhang, Y. Y., Chen, R. G., Zhang, J. H., Wang, T. T., Li, H. X., et al. (2010). Ectopic expression of the tomato Mi-1 gene confers resistance to root knot nematodes in lettuce (Lactuca sativa). Plant Molecular Biology Reporter, 28, 204–211.Google Scholar
  383. Zidorn, C. (2008). Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry, 69, 2270–2296.PubMedGoogle Scholar
  384. Zitter, T. A., & Murphy, J. F. (2009). Cucumber mosaic virus. The Plant Health Instructor. doi: 10.1094/PHI-I-2009-0518-01.Google Scholar
  385. Zohary, D. (1991). The wild genetic resources of cultivated lettuce (Lactuca sativa L.). Euphytica, 53, 31–35.Google Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Aleš Lebeda
    • 1
    Email author
  • Eva Křístková
    • 1
  • Miloslav Kitner
    • 1
  • Barbora Mieslerová
    • 1
  • Michaela Jemelková
    • 1
  • David A. C. Pink
    • 2
  1. 1.Faculty of Science, Department of BotanyPalacký University in OlomoucOlomouc-HoliceCzech Republic
  2. 2.Harper Adams UniversityNewportUK

Personalised recommendations