Skip to main content
Log in

Identification of differentially expressed genes in Brassica juncea var. tumida Tsen following infection by Plasmodiophora brassicae

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Mustard clubroot, caused by Plasmodiophora brassicae, is one of the most serious diseases affecting Brassica juncea var. tumida Tsen, a mustard plant which is the raw material of a traditional fermented food manufactured in the Chongqing Municipality, P. R. China. We used suppression subtractive hybridization (SSH) to better understand the interaction between B. juncea var. tumida and P. brassicae, and the complex regulation of resistance mechanisms occurring in B. juncea var. tumida after infection by P. brassicae. A total of 1,842 different gene clones were selected from the forward subtracted library (using diseased roots as tester and healthy roots as driver), and 224 positive spots were identified following cDNA array dot blotting. Elimination of polyA tails and sequences shorter than 100 bp generated 196 high-quality gene sequences with an average length of 332 bp. Bioinformatic analysis showed that these 196 sequences represented 173 unigenes, comprising 14 contigs and 159 singlets. Of these, 146 ESTs (84.4 % of the total) were significantly similar to known sequences in plants, the remaining 23 (13.3 % of the total) were of P. brassicae origin. We used quantitative reverse transcription-PCR to analyze the six genes most likely to be involved in disease resistance or the stress response to evaluate the efficiency of SSH, and the results showed that our library data is reliable. Further study of these genes might be helpful for breeding resistance of mustard plants to P. brassicae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal, A., Kaul, V., Faggian, R., Rookes, J. E., Ludwig-Muller, J., & Cahill, D. M. (2011). Analysis of global host gene expression during the primary phase of the Arabidopsis thalianaPlasmodiophora brassicae interaction. Functional Plant Biology, 38, 462–478.

    CAS  Google Scholar 

  • Ando, S., Asano, T., Tsushima, S., Kamachi, S., Hagio, T., & Tabei, Y. (2005). Changes in gene expression of putative isopentenyltransferase during clubroot development in Chinese cabbage (Brassica rapa L.). Physiological and Molecular Plant Pathology, 67, 59–67.

    Article  CAS  Google Scholar 

  • Belbahri, L., Chevalier, L., Bensaddek, L., Gillet, F., Fliniaux, M. A., Boerjan, W., et al. (2000). Different expression of an S-adenosylmethionine synthetase gene in transgenic tobacco callus modifies alkaloid biosynthesis. Biotechnology and Bioengineering, 69, 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Brehm, A., Miska, E. A., Mccance, D. J., Reid, J. L., Bannister, A. J., & Kouzarides, T. (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature, 391, 597–601.

    Article  PubMed  CAS  Google Scholar 

  • Bulman, S., Siemens, J., Ridgeway, H., Eady, C., & Conner, A. (2006). Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS Microbiology Letters, 264, 198–204.

    Article  PubMed  CAS  Google Scholar 

  • Burki, F., Kudryavtsev, A., Matz, M. V., Aglyamova, G. V., Bulman, S., Fiers, M., et al. (2010). Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evolutionary Biology, 10, 377.

    Article  PubMed  CAS  Google Scholar 

  • Cao, T., Srivastava, S., Rahman, M. H., Kav, N. N. V., Hotte, N., Deyholos, M. K., et al. (2008). Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Science, 174, 97–115.

    Article  CAS  Google Scholar 

  • Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., et al. (1996). S-Adenosylmethionine and methylation. The FASEB Journal, 10, 471–480.

    CAS  Google Scholar 

  • Dekhuijzen, H. M. (1979). Electron microscopic studies on the root hairs and cortex of a susceptible and a resistant variety of Brassica campestris infected with Plasmodiophora brassicae. European Journal of Plant Pathology, 85, 1–17.

    Google Scholar 

  • Delaure, S. L., Van Hemelrijck, W., Bolle, D., Miguel, F. C., Cammue, B. P. A., Coninck, D., et al. (2008). Building up plant defenses by breaking down proteins. Plant Science, 174, 375–385.

    Article  CAS  Google Scholar 

  • Devos, S., Vissenberg, K., Verbelen, J. P., & Prinsen, E. (2005). Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormone balance. The New Phytologist, 166, 241–250. doi:10.1111/j.1469-8137.2004.01304.x.

  • Devos, S., Laukens, K., Deckers, P., Van-Der-Straeten, D., Beeckman, T., Inze, D., et al. (2006). A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Molecular Plant-Microbe Interactions, 19, 1431–1443.

    Article  PubMed  CAS  Google Scholar 

  • Donald, C., & Porter, I. (2009). Integrated control of clubroot. Plant Growth Regulation, 28, 289–303.

    Article  CAS  Google Scholar 

  • Feng, J., Hwang, S. F., & Strelkov, S. E. (2012). Analysis of expressed sequence tags derived from a compatible Plasmodiophora brassicae–canola interaction. Canadian Journal of Plant Pathology. doi:10.1080/07060661.2012.722128.

    Google Scholar 

  • Ito, S., Tanaka, S., Miyanaga, C., Takabayashi, S., Yano, S., & Kameya-Iwaki, M. (1996). Constitutive and inducible proteins in the root of Chinese cabbage infected with Plasmodiophora brassicae. Journal of Phytopathology, 144, 89–95.

    Article  CAS  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto, T. (2001). Identification of plant cytokinin biosynthesis enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant & Cell Physiology, 42, 677–685.

    Article  CAS  Google Scholar 

  • Knaust, A., & Ludwig-Muller, J. (2012). The ethylene signaling pathway is needed to restrict root gall growth in Arabidopsis after Infection with the obligate biotrophic protist Plasmodiophora brassicae. Journal of Plant Growth Regulation. doi:10.1007/s00344-012-9271-y.

    Google Scholar 

  • Kobelt, P., Siemens, J., & Sacristan, M. D. (2000). Histological characterisation of the incompatible interaction between Arabidopsis thaliana and the obligate biotrophic pathogen Plasmodiophora brassicae. Mycological Research, 104, 220–225.

    Article  Google Scholar 

  • Kroll, T. K., Lacy, G. H., & Moore, L. D. (1983). A quantitative description of the colonization of susceptible and resistant radish plants by Plasmodiophora brassicae. Journal of Phytopathology, 108, 97–105.

    Article  Google Scholar 

  • Kuginuki, Y., Yoshikawa, H., & Hirai, M. (1999). Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis). European Journal of Plant Pathology, 105, 327–332.

    Article  Google Scholar 

  • Laskowski, M. J., Dreher, K. A., Gehring, M. A., Abel, S., Gensler, A. L., & Sussex, I. M. (2002). FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase. Plant Physiology, 128, 578–590.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Muller, J. (2008). Glucosinolates and the clubroot disease: defense compounds or auxin precursors? Phytochemistry Reviews, 8, 135–148.

    Article  Google Scholar 

  • Ludwig-Muller, J., & Schuller, A. (2008). What can we learn from clubroots: alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. European Journal of Plant Pathology, 121, 291–302.

    Article  Google Scholar 

  • Ludwig-Muller, J., Thermann, P., Pieper, K., & Hilgenberg, W. (1994). Peroxidase and chitinase isoenzyme activities during root infection of Chinese cabbage with Plasmodiophora brassicae. Physiologia Plantarum, 90, 661–670.

    Article  Google Scholar 

  • Ludwig-Muller, J., Prinsen, E., Rolfe, S. A., & Scholes, J. D. (2009). Metabolism and plant hormone action during clubroot disease. Journal of Plant Growth Regulation, 28, 229–244.

    Article  Google Scholar 

  • Moldenhauer, J., Moerschbacher, B. M., & Van der Westhuizen, A. J. (2006). Histological investigation of stripe rust (Puccinia striiformis f.sp tritici) development in resistant and susceptible wheat cultivars. Plant Pathology, 55, 469–474.

    Article  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Nagaoka, T., Doullah, M. A. U., Matsumoto, S., Kawasaki, S., Ishikawa, T., Hori, H., et al. (2010). Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theoretical and Applied Genetics, 120, 1335–1346.

    Article  PubMed  CAS  Google Scholar 

  • Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P., & Saedler, H. (1987). The regulatory c1 locus of Zea mays encodes a protein with homology to myb oncogene products and with structural similarities to transcriptional activators. The EMBO Journal, 6, 3553–3558.

    PubMed  CAS  Google Scholar 

  • Ramonell, K., Berrocal-Lobo, M., Koh, S., Wan, J., Edwards, H., Stacey, G., et al. (2005). Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiology, 138, 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky, L., Liang, H., & Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130, 1143–1151.

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683–1696.

    Article  PubMed  CAS  Google Scholar 

  • Siemens, J., Keller, I., Sarx, J., Kunz, S., Schuller, A., Nagel, W., et al. (2006). Transcriptome analysis of Arabidopsis clubroots and disease resistance of cytokinin oxidase/dehydrogenase gene overexpressing plants indicate a key role for cytokinin in disease development. Molecular Plant-Microbe Interactions, 19, 480–494. doi:10.1094/MPMI-19-0480.

    Article  PubMed  CAS  Google Scholar 

  • Siemens, J., Bulman, S., Rehn, F., & Sundelin, T. (2009). Molecular biology of Plasmodiophora brassicae. Journal of Plant Growth Regulation, 28, 245–251.

    Article  CAS  Google Scholar 

  • Smolen, G., & Bender, J. (2002). Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics, 160, 323–332.

    PubMed  CAS  Google Scholar 

  • Sundelin, T., Jensen, D., & Lubeck, M. (2011). Identification of expressed genes during infection of Chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae. Journal of Eukaryotic Microbiology, 58, 310–314.

    Article  PubMed  CAS  Google Scholar 

  • Terasaka, K., Blakeslee, J. J., Titapiwatanakun, B., et al. (2005). PGP4, an ATP Binding Cassette P-Glycoprotein, Catalyzes Auxin Transport in Arabidopsis thaliana Roots. The Plant Cell, 17, 2922–2939.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M. A., & Dangl, J. L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 8, 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Webster, M. A., & Dixon, G. R. (1991). Calcium, pH and inoculum concentration influencing colonization by Plasmodiophora brassicae. Mycological Research, 95, 65–73.

    Google Scholar 

  • Woodward, A. W., & Bartel, B. (2005). Auxin: regulation, action and interaction. Annals of Botany, 95, 707–735.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, C., & Guo, X. (2002). Biological characteristic of Plasmodiophora Brassicae. Mycosystema, 21, 597–603.

    Google Scholar 

  • Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Natural Science Foundation of Chongqing Science and Technology Commission (CSTC, 2008BB1370). We also gratefully appreciate the support from Chongqing Fuling Institute of Agricultural Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongkang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 2

Differentially expressed genes in the SSH library (DOC 169 kb) (DOC 169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Yin, Y., Liu, Y. et al. Identification of differentially expressed genes in Brassica juncea var. tumida Tsen following infection by Plasmodiophora brassicae . Eur J Plant Pathol 137, 43–53 (2013). https://doi.org/10.1007/s10658-013-0215-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0215-6

Keywords

Navigation