European Journal of Plant Pathology

, Volume 133, Issue 4, pp 935–947 | Cite as

Non-persistently aphid-borne viruses infecting pumpkin and squash in Serbia and partial characterization of Zucchini yellow mosaic virus isolates

  • Ana VučurovićEmail author
  • Aleksandra Bulajić
  • Ivana Stanković
  • Danijela Ristić
  • Janoš Berenji
  • Jelena Jović
  • Branka Krstić


Cucurbit species grown in the Vojvodina Province, Serbia, were surveyed for the incidence of Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Squash mosaic virus (SqMV), Papaya ringspot virus (PRSV) and Tobacco ringspot virus (TRSV) from 2007 to 2009. Samples from more than 700 pumpkin, squash and bottle gourd plants with virus-like symptoms were analyzed by double-antibody sandwich (DAS)-ELISA. ZYMV, WMV and CMV were detected in 79.2, 32.2, and 12.8% of tested samples, respectively. WMV was prevalent in 2007 and ZYMV in 2008–09. Mixed infections were the most frequent type in 2007–08 in contrast to 2009 when single infection of ZYMV prevailed. ZYMV was the most widespread being found in 33 out of 39 inspected fields. Virus species identification was confirmed in selected samples by conventional reverse transcription-polymerase chain reaction (RT-PCR) and sequencing of their coat protein genes. By comparing the obtained virus isolate sequences with those available in GenBank, the identification of serologically detected viruses was confirmed. Phylogenetic analysis based on complete coat protein (CP) sequences highlighted that Serbian ZYMV isolates were closely related to other Central European ZYMV isolates. Finally, additional testing of ELISA-negative samples by RT-PCR using primers specific to six other mosaic viruses revealed the presence of Tomato spotted wilt virus (TSWV) in winter (Cucurbita maxima) and summer (C. pepo ‘Beogradska’) squash. This is the first report of TSWV natural occurrence on cucurbits in Serbia and on winter squash worldwide.


Cucurbit viruses RT-PCR Sequencing Serological identification Virus incidence 



This study was supported by the Ministry for Education and Science of the Republic of Serbia (Project Nos. III-43001 and TR-31025).

Supplementary material

10658_2012_9964_MOESM1_ESM.pdf (119 kb)
Supplementary Fig. S1 Amino acid sequence alignment for the N-terminal part of the coat protein of Zucchini yellow mosaic virus isolates from Serbia and other parts of the world (PDF 119 kb)


  1. Abou-Jawdah, Y., Sobh, H., El-Zammar, S., Fayyad, A., & Lecoq, H. (2000). Incidence and management of virus diseases of cucurbits in Lebanon. Crop Protection, 19, 217–224.CrossRefGoogle Scholar
  2. Ali, A., Mohammad, O., & Khattab, A. (2012). Distribution of viruses infecting cucurbit crops and isolation of potential new virus-like sequences from weeds in Oklahoma. Plant Disease, 96, 243–248.CrossRefGoogle Scholar
  3. Ali, A., Natsuaki, T., & Okuda, S. (2004). Identification and molecular characterization of viruses infecting cucurbits in Pakistan. Journal of Phytopathology, 152, 677–682.CrossRefGoogle Scholar
  4. Bananej, K., Keshavarz, T., Vahdat, A., Hosseini Salekdeh, G., & Glasa, M. (2008). Biological and molecular variability of Zucchini yellow mosaic virus in Iran. Journal of Phytopathology, 156, 654–659.CrossRefGoogle Scholar
  5. Chu, F. H., Chao, C. H., Chung, M. H., Chen, C. C., & Yeh, S. D. (2001). Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology, 91, 361–367.PubMedCrossRefGoogle Scholar
  6. Coutts, B. A., Kehoe, M. A., & Jones, R. A. C. (2011a). Minimising losses caused by Zucchini yellow mosaic virus in vegetable cucurbit crops in tropical, sub-tropical and Mediterranean environments through cultural methods and host resistance. Virus Research, 159, 141–160.CrossRefGoogle Scholar
  7. Coutts, B. A., Kehoe, M. A., Webster, C. G., Wylie, S. J., & Jones, R. A. C. (2011b). Zucchini yellow mosaic virus: biological properties, detection procedure and comparison of coat protein gene sequences. Archives of Virology, 156, 2119–2131.CrossRefGoogle Scholar
  8. Desbiez, C., Costa, C., Wipf-Scheibel, C., Girard, M., & Lecoq, H. (2007). Serological and molecular variability of watermelon mosaic virus (genus Potyvirus). Archives of Virology, 152, 775–781.PubMedCrossRefGoogle Scholar
  9. Desbiez, C., Wipf-Scheibel, C., Granier, F., Robaglia, C., Delaunay, T., & Lecoq, H. (1996). Biological and molecular variability of zucchini yellow mosaic virus on the island of Martinique. Plant Disease, 80, 203–207.CrossRefGoogle Scholar
  10. Desbiez, C., Wipf-Scheibel, C., & Lecoq, H. (2002). Biological and serological variability, evolution and molecular epidemiology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) with special reference to Caribbean islands. Virus Research, 85, 5–16.PubMedCrossRefGoogle Scholar
  11. Dukić, N., Krstić, B., Vico, I., Berenji, J., & Duduk, B. (2006). First report of Zucchini yellow mosaic virus, Watermelon mosaic virus and Cucumber mosaic virus in bottlegourd (Lagenaria siceraria) in Serbia. Plant Disease, 90, 380.Google Scholar
  12. Dukić, N., Krstić, B., Vico, I., Katis, N. I., Papavassilious, C., & Berenji, J. (2002). Biological and serological characterization of viruses on summer squash crops in Yugoslavia. Journal of Agricultural Sciences, Belgrade, 47, 149–160.CrossRefGoogle Scholar
  13. FAO (2008). The FAO Statistical Database (FAOSTAT): Food and Agriculture Organization of the United Nations. Retrieved from
  14. Glasa, M., Svoboda, J., & Nováková, S. (2007). Analysis of the molecular and biological variability of Zucchini yellow mosaic virus isolates from Slovakia and Czech Republic. Virus Genes, 35, 415–421.PubMedCrossRefGoogle Scholar
  15. Griesbach, J. A. (1995). Detection of tomato ringspot virus by polymerase chain reaction. Plant Disease, 79, 1054–1056.CrossRefGoogle Scholar
  16. Ha, C., Revill, P., Harding, R. M., Vu, M., & Dale, J. L. (2008). Identification and sequence analysis of potyviruses infecting crops in Vietnam. Archives of Virology, 153, 45–60.PubMedCrossRefGoogle Scholar
  17. Iwaki, M., Honda, Y., Hanada, K., Tochihara, H., Yonaha, T., Hokama, K., & Yokoyama, T. (1984). Silver mottle disease of watermelon caused by tomato spotted wilt virus. Plant Disease, 68, 1006–1008.Google Scholar
  18. Jossey, S., & Babadoost, M. (2008). Occurrence and distribution of pumpkin and squash viruses in Illinois. Plant Disease, 92, 61–68.CrossRefGoogle Scholar
  19. Lecoq, H., Desbiez, S., Wipf-Schibel, C., & Girard, M. (2003). Potential involvement of melon fruit in long distance dissemination of cucurbit potyviruses. Plant Disease, 87, 955–959.CrossRefGoogle Scholar
  20. Lecoq, H., Justafré, I., Wipf-Scheibel, C., & Desbiez, C. (2008). Moroccan watermelon mosaic virus newly reported on zucchini squash in France. Plant Pathology, 57, 766.CrossRefGoogle Scholar
  21. Lecoq, H., Wipf-Schibel, C., Chandeysson, C., Le Van, A., Fabre, F., & Desbiez, C. (2009). Molecular epidemiology of Zucchini yellow mosaic virus in France: An historical overview. Virus Research, 141, 190–200.PubMedCrossRefGoogle Scholar
  22. Lecoq, H., Wisler, G., & Pitrat, M. (1998). Cucurbit viruses: The classics and the emerging. In J. D. McCreight (Ed.), Cucurbitaceae ’98: Evaluation and enhancement of cucurbit germplasm (pp. 126–142). Alexandria: ASHS.Google Scholar
  23. Marchoux, G., Hostachy, B., Gebre-Selassie, K., & Gognalons, P. (2000). Tomato spotted wilt virus: hôtes et méthodes de lutte. PHM—Revue Horticole, 418, 46–52.Google Scholar
  24. Massumi, H., Samei, A., Hosseini Pour, A., Shaabanian, M., & Rahimian, H. (2007). Occurrence, distribution and relative incidence of seven viruses infecting greenhouse-grown cucurbits in Iran. Plant Disease, 91, 159–163.CrossRefGoogle Scholar
  25. Nagata, T., de Ávila, A. C., Tavares, P. C. M., Barbosa, C. J., Juliatti, F. C., & Kitajima, E. W. (1995). Occurrence of different tospoviruses in six states of Brazil. Fitopatologia Brasiliera, 20, 90–95.Google Scholar
  26. Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141, 219–236.PubMedCrossRefGoogle Scholar
  27. Pfosser, M. F., & Baumann, H. (2002). Phylogeny and geographical differentiation of zucchini yellow mosaic virus isolates (Potyviridae) based on molecular analysis of the coat protein and part of the cytoplasmic inclusion protein genes. Archives of Virology, 147, 1599–1609.PubMedCrossRefGoogle Scholar
  28. Provvidenti, R. (1996). Diseases caused by viruses. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), Compendium of Cucurbit Diseases (pp. 37–45). St. Paul: American Phytopathological Society.Google Scholar
  29. Ramos, N. F., Lima, J. A. A., & Gonçalves, M. F. B. (2003). Symptoms of potyvirus interactions on melon hybrids, watermelon varieties and zucchini. Fitopatologia Brasileira, 28, 199–203.CrossRefGoogle Scholar
  30. Rao, X., Liu, Y., Wu, Z., & Li, Y. (2011). First report of natural infection of watermelon by Watermelon silver mottle virus in China. New Disease Reports, 24, 12.Google Scholar
  31. Roossinck, M. J., Zhang, L., & Hellwald, K. H. (1999). Rearrangements in the 5′ nontranslated region and phylogenetic analyses of cucumber mosaic virus RNA3 indicate radial evolution of three subgroups. Journal of Virology, 73, 6752–6758.PubMedGoogle Scholar
  32. Silveira, W. G., Jr., Avila, A. C., & Muñoz, J. O. (1985). Chayote (Sechium edule Sw): a new host of tomato spotted wilt virus. Fitopatologia Brasileira, 10, 661–665.Google Scholar
  33. Simmons, H. E., Holmes, E. C., Gildow, F. E., Bothe-Goralczyk, M. A., & Stephenson, A. G. (2011). Experimental verification of seed transmission of Zucchini yellow mosaic virus. Plant Disease, 95, 751–754.CrossRefGoogle Scholar
  34. Simmons, H. E., Holmes, E. C., & Stephenson, A. G. (2008). Rapid evolutionary dynamics of zucchini yellow mosaic virus. Journal of General Virology, 89, 1081–1085.PubMedCrossRefGoogle Scholar
  35. Stanković, I., Bulajić, A., Vučurović, A., Ristić, D., Milojević, K., Berenji, J., & Krstić, B. (2011). Status of tobacco viruses in Serbia and molecular characterization of Tomato spotted wilt virus isolates. Acta Virologica, 55, 337–347.PubMedCrossRefGoogle Scholar
  36. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCrossRefGoogle Scholar
  37. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.PubMedCrossRefGoogle Scholar
  38. Tóbiás, I., & Palkovics, L. (2003). Characterization of Hungarian isolates of zucchini yellow mosaic virus (ZYMV, potyvirus) transmitted by seeds of Cucurbita pepo var. Styriaca. Pest Management Science, 59, 493–497.PubMedCrossRefGoogle Scholar
  39. Tomassoli, L., Tiberini, A., & Meneghini, M. (2010). Zucchini yellow fleck virus is an emergent virus on melon in Sicily (Italy). Journal of Phytopathology, 158, 314–316.CrossRefGoogle Scholar
  40. Vučurović, A., Bulajić, A., Stanković, I., Ristić, D., Berenji, J., & Krstić, B. (2011). The current status of cucurbit viruses in Serbia (pp. 109). 4th Conference of the International Working Group on Legume and Vegetable Viruses (IWGLVV), Antequera, Spain.Google Scholar
  41. Wang, Y., Gaba, V., Yang, J., Palukaitis, P., & Gal-On, A. (2002). Characterizations of synergy between cucumber mosaic virus and potyviruses in cucurbit hosts. Phytopathology, 147, 2301–2312.Google Scholar
  42. Yeh, S. D., & Chang, T. F. (1995). Nucleotide sequence of the N gene of watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology, 85, 58–64.CrossRefGoogle Scholar
  43. Zeng, R., Liao, Q., Feng, J. D., Li, J. D., & Chen, J. (2007). Synergy between Cucumber mosaic virus and Zucchini yellow mosaic virus on Cucurbitaceae hosts tested by real-time reverse transcription-polymerase chain reaction. Acta Biochimica et Biophysica Sinica, 39, 431–437.PubMedCrossRefGoogle Scholar
  44. Zhao, M. F., Chen, J., Zheng, H. Y., Adams, M. J., & Chen, J. P. (2003). Molecular analysis of Zucchini yellow mosaic virus isolates from Hangzhou, China. Journal of Phytopathology, 151, 307–311.CrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Ana Vučurović
    • 1
    Email author
  • Aleksandra Bulajić
    • 1
  • Ivana Stanković
    • 1
  • Danijela Ristić
    • 1
  • Janoš Berenji
    • 2
  • Jelena Jović
    • 3
  • Branka Krstić
    • 1
  1. 1.Department of Phytopathology, Institute of Plant ProtectionUniversity of Belgrade-Faculty of AgricultureBelgradeSerbia
  2. 2.Institute of Field and Vegetable CropsNovi SadSerbia
  3. 3.Department of Plant PestsInstitute for Plant Protection and EnvironmentBelgradeSerbia

Personalised recommendations