Skip to main content

Advertisement

Log in

Non-persistently aphid-borne viruses infecting pumpkin and squash in Serbia and partial characterization of Zucchini yellow mosaic virus isolates

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cucurbit species grown in the Vojvodina Province, Serbia, were surveyed for the incidence of Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Squash mosaic virus (SqMV), Papaya ringspot virus (PRSV) and Tobacco ringspot virus (TRSV) from 2007 to 2009. Samples from more than 700 pumpkin, squash and bottle gourd plants with virus-like symptoms were analyzed by double-antibody sandwich (DAS)-ELISA. ZYMV, WMV and CMV were detected in 79.2, 32.2, and 12.8% of tested samples, respectively. WMV was prevalent in 2007 and ZYMV in 2008–09. Mixed infections were the most frequent type in 2007–08 in contrast to 2009 when single infection of ZYMV prevailed. ZYMV was the most widespread being found in 33 out of 39 inspected fields. Virus species identification was confirmed in selected samples by conventional reverse transcription-polymerase chain reaction (RT-PCR) and sequencing of their coat protein genes. By comparing the obtained virus isolate sequences with those available in GenBank, the identification of serologically detected viruses was confirmed. Phylogenetic analysis based on complete coat protein (CP) sequences highlighted that Serbian ZYMV isolates were closely related to other Central European ZYMV isolates. Finally, additional testing of ELISA-negative samples by RT-PCR using primers specific to six other mosaic viruses revealed the presence of Tomato spotted wilt virus (TSWV) in winter (Cucurbita maxima) and summer (C. pepo ‘Beogradska’) squash. This is the first report of TSWV natural occurrence on cucurbits in Serbia and on winter squash worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abou-Jawdah, Y., Sobh, H., El-Zammar, S., Fayyad, A., & Lecoq, H. (2000). Incidence and management of virus diseases of cucurbits in Lebanon. Crop Protection, 19, 217–224.

    Article  Google Scholar 

  • Ali, A., Mohammad, O., & Khattab, A. (2012). Distribution of viruses infecting cucurbit crops and isolation of potential new virus-like sequences from weeds in Oklahoma. Plant Disease, 96, 243–248.

    Article  Google Scholar 

  • Ali, A., Natsuaki, T., & Okuda, S. (2004). Identification and molecular characterization of viruses infecting cucurbits in Pakistan. Journal of Phytopathology, 152, 677–682.

    Article  CAS  Google Scholar 

  • Bananej, K., Keshavarz, T., Vahdat, A., Hosseini Salekdeh, G., & Glasa, M. (2008). Biological and molecular variability of Zucchini yellow mosaic virus in Iran. Journal of Phytopathology, 156, 654–659.

    Article  CAS  Google Scholar 

  • Chu, F. H., Chao, C. H., Chung, M. H., Chen, C. C., & Yeh, S. D. (2001). Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology, 91, 361–367.

    Article  PubMed  CAS  Google Scholar 

  • Coutts, B. A., Kehoe, M. A., & Jones, R. A. C. (2011a). Minimising losses caused by Zucchini yellow mosaic virus in vegetable cucurbit crops in tropical, sub-tropical and Mediterranean environments through cultural methods and host resistance. Virus Research, 159, 141–160.

    Article  CAS  Google Scholar 

  • Coutts, B. A., Kehoe, M. A., Webster, C. G., Wylie, S. J., & Jones, R. A. C. (2011b). Zucchini yellow mosaic virus: biological properties, detection procedure and comparison of coat protein gene sequences. Archives of Virology, 156, 2119–2131.

    Article  CAS  Google Scholar 

  • Desbiez, C., Costa, C., Wipf-Scheibel, C., Girard, M., & Lecoq, H. (2007). Serological and molecular variability of watermelon mosaic virus (genus Potyvirus). Archives of Virology, 152, 775–781.

    Article  PubMed  CAS  Google Scholar 

  • Desbiez, C., Wipf-Scheibel, C., Granier, F., Robaglia, C., Delaunay, T., & Lecoq, H. (1996). Biological and molecular variability of zucchini yellow mosaic virus on the island of Martinique. Plant Disease, 80, 203–207.

    Article  CAS  Google Scholar 

  • Desbiez, C., Wipf-Scheibel, C., & Lecoq, H. (2002). Biological and serological variability, evolution and molecular epidemiology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) with special reference to Caribbean islands. Virus Research, 85, 5–16.

    Article  PubMed  CAS  Google Scholar 

  • Dukić, N., Krstić, B., Vico, I., Berenji, J., & Duduk, B. (2006). First report of Zucchini yellow mosaic virus, Watermelon mosaic virus and Cucumber mosaic virus in bottlegourd (Lagenaria siceraria) in Serbia. Plant Disease, 90, 380.

    Google Scholar 

  • Dukić, N., Krstić, B., Vico, I., Katis, N. I., Papavassilious, C., & Berenji, J. (2002). Biological and serological characterization of viruses on summer squash crops in Yugoslavia. Journal of Agricultural Sciences, Belgrade, 47, 149–160.

    Article  Google Scholar 

  • FAO (2008). The FAO Statistical Database (FAOSTAT): Food and Agriculture Organization of the United Nations. Retrieved from http://faostat.fao.org.

  • Glasa, M., Svoboda, J., & Nováková, S. (2007). Analysis of the molecular and biological variability of Zucchini yellow mosaic virus isolates from Slovakia and Czech Republic. Virus Genes, 35, 415–421.

    Article  PubMed  CAS  Google Scholar 

  • Griesbach, J. A. (1995). Detection of tomato ringspot virus by polymerase chain reaction. Plant Disease, 79, 1054–1056.

    Article  CAS  Google Scholar 

  • Ha, C., Revill, P., Harding, R. M., Vu, M., & Dale, J. L. (2008). Identification and sequence analysis of potyviruses infecting crops in Vietnam. Archives of Virology, 153, 45–60.

    Article  PubMed  CAS  Google Scholar 

  • Iwaki, M., Honda, Y., Hanada, K., Tochihara, H., Yonaha, T., Hokama, K., & Yokoyama, T. (1984). Silver mottle disease of watermelon caused by tomato spotted wilt virus. Plant Disease, 68, 1006–1008.

    Google Scholar 

  • Jossey, S., & Babadoost, M. (2008). Occurrence and distribution of pumpkin and squash viruses in Illinois. Plant Disease, 92, 61–68.

    Article  Google Scholar 

  • Lecoq, H., Desbiez, S., Wipf-Schibel, C., & Girard, M. (2003). Potential involvement of melon fruit in long distance dissemination of cucurbit potyviruses. Plant Disease, 87, 955–959.

    Article  Google Scholar 

  • Lecoq, H., Justafré, I., Wipf-Scheibel, C., & Desbiez, C. (2008). Moroccan watermelon mosaic virus newly reported on zucchini squash in France. Plant Pathology, 57, 766.

    Article  Google Scholar 

  • Lecoq, H., Wipf-Schibel, C., Chandeysson, C., Le Van, A., Fabre, F., & Desbiez, C. (2009). Molecular epidemiology of Zucchini yellow mosaic virus in France: An historical overview. Virus Research, 141, 190–200.

    Article  PubMed  CAS  Google Scholar 

  • Lecoq, H., Wisler, G., & Pitrat, M. (1998). Cucurbit viruses: The classics and the emerging. In J. D. McCreight (Ed.), Cucurbitaceae ’98: Evaluation and enhancement of cucurbit germplasm (pp. 126–142). Alexandria: ASHS.

    Google Scholar 

  • Marchoux, G., Hostachy, B., Gebre-Selassie, K., & Gognalons, P. (2000). Tomato spotted wilt virus: hôtes et méthodes de lutte. PHM—Revue Horticole, 418, 46–52.

    Google Scholar 

  • Massumi, H., Samei, A., Hosseini Pour, A., Shaabanian, M., & Rahimian, H. (2007). Occurrence, distribution and relative incidence of seven viruses infecting greenhouse-grown cucurbits in Iran. Plant Disease, 91, 159–163.

    Article  Google Scholar 

  • Nagata, T., de Ávila, A. C., Tavares, P. C. M., Barbosa, C. J., Juliatti, F. C., & Kitajima, E. W. (1995). Occurrence of different tospoviruses in six states of Brazil. Fitopatologia Brasiliera, 20, 90–95.

    Google Scholar 

  • Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141, 219–236.

    Article  PubMed  CAS  Google Scholar 

  • Pfosser, M. F., & Baumann, H. (2002). Phylogeny and geographical differentiation of zucchini yellow mosaic virus isolates (Potyviridae) based on molecular analysis of the coat protein and part of the cytoplasmic inclusion protein genes. Archives of Virology, 147, 1599–1609.

    Article  PubMed  CAS  Google Scholar 

  • Provvidenti, R. (1996). Diseases caused by viruses. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), Compendium of Cucurbit Diseases (pp. 37–45). St. Paul: American Phytopathological Society.

    Google Scholar 

  • Ramos, N. F., Lima, J. A. A., & Gonçalves, M. F. B. (2003). Symptoms of potyvirus interactions on melon hybrids, watermelon varieties and zucchini. Fitopatologia Brasileira, 28, 199–203.

    Article  Google Scholar 

  • Rao, X., Liu, Y., Wu, Z., & Li, Y. (2011). First report of natural infection of watermelon by Watermelon silver mottle virus in China. New Disease Reports, 24, 12.

    Google Scholar 

  • Roossinck, M. J., Zhang, L., & Hellwald, K. H. (1999). Rearrangements in the 5′ nontranslated region and phylogenetic analyses of cucumber mosaic virus RNA3 indicate radial evolution of three subgroups. Journal of Virology, 73, 6752–6758.

    PubMed  CAS  Google Scholar 

  • Silveira, W. G., Jr., Avila, A. C., & Muñoz, J. O. (1985). Chayote (Sechium edule Sw): a new host of tomato spotted wilt virus. Fitopatologia Brasileira, 10, 661–665.

    Google Scholar 

  • Simmons, H. E., Holmes, E. C., Gildow, F. E., Bothe-Goralczyk, M. A., & Stephenson, A. G. (2011). Experimental verification of seed transmission of Zucchini yellow mosaic virus. Plant Disease, 95, 751–754.

    Article  Google Scholar 

  • Simmons, H. E., Holmes, E. C., & Stephenson, A. G. (2008). Rapid evolutionary dynamics of zucchini yellow mosaic virus. Journal of General Virology, 89, 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  • Stanković, I., Bulajić, A., Vučurović, A., Ristić, D., Milojević, K., Berenji, J., & Krstić, B. (2011). Status of tobacco viruses in Serbia and molecular characterization of Tomato spotted wilt virus isolates. Acta Virologica, 55, 337–347.

    Article  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Tóbiás, I., & Palkovics, L. (2003). Characterization of Hungarian isolates of zucchini yellow mosaic virus (ZYMV, potyvirus) transmitted by seeds of Cucurbita pepo var. Styriaca. Pest Management Science, 59, 493–497.

    Article  PubMed  Google Scholar 

  • Tomassoli, L., Tiberini, A., & Meneghini, M. (2010). Zucchini yellow fleck virus is an emergent virus on melon in Sicily (Italy). Journal of Phytopathology, 158, 314–316.

    Article  CAS  Google Scholar 

  • Vučurović, A., Bulajić, A., Stanković, I., Ristić, D., Berenji, J., & Krstić, B. (2011). The current status of cucurbit viruses in Serbia (pp. 109). 4th Conference of the International Working Group on Legume and Vegetable Viruses (IWGLVV), Antequera, Spain.

  • Wang, Y., Gaba, V., Yang, J., Palukaitis, P., & Gal-On, A. (2002). Characterizations of synergy between cucumber mosaic virus and potyviruses in cucurbit hosts. Phytopathology, 147, 2301–2312.

    Google Scholar 

  • Yeh, S. D., & Chang, T. F. (1995). Nucleotide sequence of the N gene of watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology, 85, 58–64.

    Article  CAS  Google Scholar 

  • Zeng, R., Liao, Q., Feng, J. D., Li, J. D., & Chen, J. (2007). Synergy between Cucumber mosaic virus and Zucchini yellow mosaic virus on Cucurbitaceae hosts tested by real-time reverse transcription-polymerase chain reaction. Acta Biochimica et Biophysica Sinica, 39, 431–437.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M. F., Chen, J., Zheng, H. Y., Adams, M. J., & Chen, J. P. (2003). Molecular analysis of Zucchini yellow mosaic virus isolates from Hangzhou, China. Journal of Phytopathology, 151, 307–311.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry for Education and Science of the Republic of Serbia (Project Nos. III-43001 and TR-31025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Vučurović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Amino acid sequence alignment for the N-terminal part of the coat protein of Zucchini yellow mosaic virus isolates from Serbia and other parts of the world (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vučurović, A., Bulajić, A., Stanković, I. et al. Non-persistently aphid-borne viruses infecting pumpkin and squash in Serbia and partial characterization of Zucchini yellow mosaic virus isolates. Eur J Plant Pathol 133, 935–947 (2012). https://doi.org/10.1007/s10658-012-9964-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-9964-x

Keywords

Navigation