Influence of Colletotrichum simmondsii R. G. Shives & Y. P. Tan infection on selected primary and secondary metabolites in strawberry (Fragaria x ananassa Duch.) fruit and runners

Abstract

The effect of Colletotrichum simmondsii infection on the contents of sugars, organic acids, and individual phenolic compounds was investigated in strawberry cultivar ‘Clery’. Primary metabolites were determined with the use of HPLC and secondary metabolites further confirmed with HPLC-MS. Colletotrichum simmondsii caused a decrease in sucrose and an increase in fructose and glucose in strawberry fruit. A significant decrease in the content of malic and citric acids was recorded in infected fruit. 12 forms of ellagic acid, nine flavanols and eight flavonols were identified in strawberry runners and nine forms of ellagic acid, six flavanols, seven flavonols and four anthocyanins in strawberry fruit. Significant differences in individual phenolic compounds in strawberry fruit were detected at the beginning of the infection compared to non-infected fruit. Specifically, ellagic acids significantly increased, flavonols generally decreased, and flavanols and anthocyanins increased with the progression of infection. Similarly, some forms of ellagic acid increased and others decreased in infected runners, procyanidins generally decreased and flavonols, increased but the differences were much less prominent.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aaby, K., Ekberg, D., & Skrede, G. (2007). Characterization of phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. Journal of Agricultural and Food Chemistry, 55, 4395–4406.

    PubMed  Article  CAS  Google Scholar 

  2. Aaby, K., Mazur, S., Nes, A., & Skrede, G. (2012). Phenolic compounds in strawberry (Fragaria x annanassa Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chemistry, 132, 86–97.

    Article  CAS  Google Scholar 

  3. Basson, C. E., Groenewald, H. J., Kossmann, J., Cronje, C., & Bauer, R. (2010). Sugar and acid-related quality attributes and enzyme activities in strawberry fruits: invertase is the main sucrose hydrolysing enzyme. Food Chemistry, 121, 1115–1162.

    Article  Google Scholar 

  4. Bordonaba, J. G., & Terry, L. A. (2008). Biochemical profiling and chemometric analysis of seventeen UK-grown black currant. Journal of Agricultural and Food Chemistry, 56, 7422–7430.

    PubMed  Article  CAS  Google Scholar 

  5. Bracey, D., Holyoak, C. D., & Coote, P. J. (1998). Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH. Journal of Applied Microbiology, 85, 1056–1066.

    PubMed  Article  CAS  Google Scholar 

  6. Crespo, P., Bordonaba, J. G., Terry, L. A., & Carlen, C. (2010). Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chemistry, 122, 16–24.

    Article  CAS  Google Scholar 

  7. Curry, J. K., Abril, M., Avant, J. B., & Smith, B. J. (2002). Strawberry anthracnose: histopathology of Colletotrichum acutatum and C. fragariae. Mycology, 92, 1055–1063.

    Google Scholar 

  8. Davik, J., Bakken, A. K., Holte, K., & Blomhoff, R. (2006). Effect of genotype and environment on total anti-oxidant capacity and the content of sugars and acids in strawberry (Fragaria x ananassa Duch.). The Journal of Horticultural Science and Biotechnology, 81, 1057–1063.

    CAS  Google Scholar 

  9. Guerber, J. C., Liu, B., Correll, J. C., & Johnston, P. R. (2003). Characterization of diversity in Colletotrichum actutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia, 95, 872–895.

    PubMed  Article  CAS  Google Scholar 

  10. Häkkinen, S. H., Kärenlampi, S. O., Mykkänen, H. M., Heinonen, J. M., & Törrönen, A. R. (2000). Ellagic acids content in berries: influence of domestic processing and storage. European Food Research and Technology, 212, 75–80.

    Article  Google Scholar 

  11. Halbwirth, H., Puhl, I., Haas, U., Jezik, K., Treutter, D., & Stich, K. (2006). Two-phase flavonoid formation in developing strawberry (Fragaria x ananassa) fruit. Journal of Agricultural and Food Chemistry, 54, 1479–1485.

    PubMed  Article  CAS  Google Scholar 

  12. Keutgen, A., & Pawelzik, E. (2007). Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chemistry, 105, 1487–1494.

    Article  CAS  Google Scholar 

  13. Lindon, C. F., Ramalho, C. J., Pais, I. P., Ramos, A. P., Santos, M. J., Arrabaca, J. D., & Barreiro, M. G. (2012). Fungistatic action of Aureobasidium pulluland on Penicillium expansum in ˝Rocha˝pear: implications for oxidative stress during fruit storage. International Journal of Pest Management, 58, 41–52.

    Article  Google Scholar 

  14. Lobato, A. K. S., Gonçalves-Vidigal, M. C., Vidigal Filho, P. S., Costa, R. C. L., Cruz, F. J. R., Santos, D. G. C., Silva, C. R., Silva, L. I., & Sousa, L. L. (2009). Changes in photosynthetic pigment and carbohydrate content in common bean cultivars infected by Colletotrichum lindemuthianu. Plant, Soil and Environment, 55, 58–61.

    CAS  Google Scholar 

  15. Lopez, F. N. A., Quintana, M. C. D., & Fernandez, A. G. (2006). Microbial evolution during storage of seasoned olives prepared with organic acids with potassium sorbate, sodium benzoate, and ozone used as preservatives. Journal of Food Protection, 69, 1354–1364.

    CAS  Google Scholar 

  16. Määttä-Riihinen, K. R., Kamal-Eldin, A., & Torronen, A. R. (2004). Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (Family Rosaceae). Journal of Agricultural and Food Chemistry, 52, 6178–6187.

    PubMed  Article  Google Scholar 

  17. Marks, S. C., Mullen, W., & Crozier, A. (2007). Flavonois and chlorogenic acid profiles of English cider apples. Journal of the Science of Food and Agriculture, 87, 719–728.

    Article  CAS  Google Scholar 

  18. Mayr, U., Michalek, S., Treutter, D., & Feucht, W. (1997). Phenolic compounds of apple and their relationship to scab resistance. Journal of Phytopathology, 145, 69–75.

    Article  CAS  Google Scholar 

  19. Michalek, S., Mayr, U., Treutter, D., Lux-Endrich, A., Gutmann, M., Feucht, W., & Geibel, M. (1999). Role of flavan-3-ols in resistance of apple trees to Venturia inaequalis. Acta Horticulturae, 484, 535–539.

    Google Scholar 

  20. Mikulic-Petkovsek, M., Stampar, F., & Veberic, R. (2007). Parameters of inner quality of the apple scab resistant and susceptible apple cultivars (Malus domestica Borkh.). Scientia Horticulturae, 114, 37–44.

    Article  Google Scholar 

  21. Mikulic-Petkovsek, M., Stampar, F., & Veberic, R. (2008). Increased phenolic content in apple leaves infected with the apple scab pathogen. Journal of Plant Pathology, 90, 49–55.

    Google Scholar 

  22. Mikulic-Petkovsek, M., Stampar, F., & Veberic, R. (2009). Accumulation of phenolic compounds in apple in response to infection by the scab pathogen, Venturia inaequalis. Physiological and Molecular Plant Pathology, 74, 60–67.

    Article  CAS  Google Scholar 

  23. Milivojevic, J., Maksimovic, V., Nikolic, M., Bogdanovic, J., Maletic, R., & Milatovic, D. (2011). Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. Journal of Food Quality, 34, 1–9.

    Article  CAS  Google Scholar 

  24. Perez, A. G., Olias, R., Espada, J., Olias, M. J., & Sanz, C. (1997). Rapid determination of sugars, nonvolatile acids and ascorbis acid in strawberry and other fruits. Journal of Agricultural and Food Chemistry, 45, 3545–3549.

    Article  CAS  Google Scholar 

  25. Pineli, L. L. O., Moretti, C. L., Santos, M. S., Campos, A. B., Brasileiro, A. V., Córdova, A. C., & Chiarello, M. D. (2011). Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages. Journal of Food Composition and Analysis, 24, 11–16.

    Article  CAS  Google Scholar 

  26. Salmond, C. V., Kroll, R. G., & Booth, I. R. (1984). The effect of food preservatives on pH homeostasis in Escherichia Coli. Journal of General Microbiology, 130, 2845–2850.

    PubMed  CAS  Google Scholar 

  27. Schwalb, P., & Feucht, W. (1999). Changes in the concentration of phenolic substances in the bark during the annual development of the cherry tree (Prunus avium L.). Advances in Horticultural Science, 13, 71–75.

    Google Scholar 

  28. Shivas, R. G., & Tan, J. P. (2009). A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et. stat. nov. and C. simmondsii sp. nov. Fungal Diversity, 39, 111–122.

    Google Scholar 

  29. Solar, A., Jakopic, J., Veberic, R., & Stampar, F. (2012). Correlations between Xanthomonas arboricola pv. Juglandis severity and endogenous juglone and phenolic acids in walnut. Journal of Plant Pathology, 94, 229–235.

    Google Scholar 

  30. Sreenivasaprasad, S., & Talhinhas, P. (2005). Genotipic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Molecular Plant Pathology, 6, 361–378.

    PubMed  Article  CAS  Google Scholar 

  31. Sturm, K., Koron, D., & Stampar, F. (2003). The composition of fruit of different strawberry varieties depending on maturity stage. Food Chemistry, 83, 417–422.

    Article  CAS  Google Scholar 

  32. Strack, D. (1997). Phenolic metabolism. In P. M. Dey & J. B. Harborne (Eds.), Plant biochemistry (pp. 387–416). London: Academic.

    Google Scholar 

  33. Terry, L. A., White, S. F., & Tigwell, L. J. (2005). The application of biosensors to fresh produce and the wider food industry. Journal of Agricultural and Food Chemistry, 53, 1309–1316.

    PubMed  Article  CAS  Google Scholar 

  34. Terry, L. A., Chope, G. A., & Bordonaba, G. (2007). Effect of water deficit irrigation and inoculation with Botrytis cinerea on strawberry (Fragaria x ananassa Duch.) fruit quality. Journal of Agricultural and Food Chemistry, 55, 10812–10819.

    PubMed  Article  CAS  Google Scholar 

  35. Valencia-Chamorro, S. A., Perez-Gabo, M. B., Del Rio, M. A., & Palou, L. (2009). Cultive and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coating containing antifungal food additives to control citrus postharvest green and blue molds. Journal of Agricultural and Food Chemistry, 57, 2770–2777.

    PubMed  Article  CAS  Google Scholar 

  36. Vasco, C., Riihinen, K., Ruales, J., & Kamal-Elden, A. (2009). Phenolic compounds in Rosaceae fruits from Ecuador. Journal of Agricultural and Food Chemistry, 57, 1204–1212.

    PubMed  Article  CAS  Google Scholar 

  37. Vinnere, O., Fatehi, J., Wright, S. A. I., & Gerhardson, B. (2002). The causal agent of anthracnose of Rhododendron in Sweden and Latvia. Mycological Research, 106, 60–69.

    Article  CAS  Google Scholar 

  38. Usenik, V., Mikulic-Petkovsek, M., Solar, A., & Stampar, F. (2004). Flavanols of leaves in relation to apple scab resistance. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 111, 137–144.

    CAS  Google Scholar 

Download references

Acknowledgements

The research is part of program Horticulture No. P4-0013-0481 and the project No J4-4187 funded by the Slovenian Research Agency (ARRS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Weber.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weber, N., Schmitzer, V., Jakopic, J. et al. Influence of Colletotrichum simmondsii R. G. Shives & Y. P. Tan infection on selected primary and secondary metabolites in strawberry (Fragaria x ananassa Duch.) fruit and runners. Eur J Plant Pathol 136, 281–290 (2013). https://doi.org/10.1007/s10658-012-0162-7

Download citation

Keywords

  • Fragaria x ananassa Duch.
  • Anthracnose
  • Infection
  • Sugars
  • Organic acids
  • Phenolics