Avirulent strain of Colletotrichum induces a systemic resistance in strawberry

Abstract

Strawberry plants exposed to an avirulent isolate of Colletotrichum fragariae acquired strong resistance against a virulent strain of C. acutatum. Biochemical, morphological and molecular markers indicated that the strong defence response was associated with an oxidative burst and a transient accumulation of salicylic acid (SA). A maximum accumulation of H2O2 and O2 was observed 8 h after inoculation (hai), callose was detected 48 hai, and a peak of SA was observed 48 hai. Biochemical and phytopathogenic analyses carried out in non-treated tissues revealed that the defence response was systemic and remained fully active 60 days after the first inoculation. Experiments also showed that the resistance acquired by mother plants after the inoculation with the avirulent isolate could be passed to daughter plants through runners. Further characterization of the induced systemic resistance showed that the resistance was not only effective against a virulent strain of C. acutatum but also against Botrytis cinerea.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

dai:

Days after inoculation

DSR:

Disease severity rating

hai:

Hours after inoculation

ROS:

Reactive oxygen species

SA:

Salicylic acid

SAR:

Systemic acquired resistance

References

  1. Adaskaveg, J. E., & Hartin, R. J. (1997). Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology, 87, 979–987.

    PubMed  Article  CAS  Google Scholar 

  2. Beraha, L., & Wright, W. R. (1973). A new anthracnose of strawberry caused by Colletotrichum dematium. Plant Disease Reporter, 57, 445–448.

    Google Scholar 

  3. Chalfoun, N. R., Castagnaro, A. P., & Díaz Ricci, J. C. (2011). Induced resistance activated by a culture filtrate derived from an avirulent pathogen as a mechanism of biological control of anthracnose in strawberry. Biological Control, 58, 319–329.

    Article  Google Scholar 

  4. Delp, B. R., & Milholland, R. D. (1980). Evaluating strawberry plants for resistance to Colletotrichum fragariae. Plant Disease, 64, 1071–1073.

    Article  Google Scholar 

  5. Doke, N. (1983). Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytopthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiological Plant Pathology, 23, 359–367.

    Article  CAS  Google Scholar 

  6. Freeman, S., & Katan, T. (1997). Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology, 87, 516–521.

    PubMed  Article  CAS  Google Scholar 

  7. Fulton, R. W. (1986). Practices and precautions in the use of cross protection for plant virus disease control. Annual Review of Phytopathology, 24, 67–81.

    Article  Google Scholar 

  8. Guo, H., & Ecker, J. R. (2004). The ethylene signaling pathway: new insights. Current Opinion in Plant Biology, 7, 40–49.

    PubMed  Article  CAS  Google Scholar 

  9. Hauck, P., Thilmony, R., & He, S. Y. (2003). A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defence in susceptible Arabidopsis plants. Proceedings National Academy of Science USA, 100, 8577–8582.

    Article  CAS  Google Scholar 

  10. Howard, C. M., Maas, J. L., Chandler, C. K., & Albregts, E. E. (1992). Anthracnose of strawberry caused by the Colletotrichum complex in Florida. Plant Disease, 76, 976–981.

    Article  Google Scholar 

  11. Iandolino, A. B., Goes da Silva, F., Lim, H., Choi, H., Willams, L. E., & Cook, D. R. (2004). High-quality RNA, cDNA, and derived EST libraries from grapevine (Vitis vinifera L.). Plant Molecular Biology Reporter, 22, 269–278.

    Article  CAS  Google Scholar 

  12. Khan, A. A., & Shih, D. S. (2004). Molecular cloning, characterization, and expression analysis of two class II chitinase genes from the strawberry plant. Plant Science, 166, 753–762.

    Article  CAS  Google Scholar 

  13. Kuc, J. (1982). Induced immunity to plant disease. Bio Science, 32, 854–860.

    Google Scholar 

  14. Kuc, J. (2001). Concepts and direction of induced systemic resistance in plants and its application. European Journal of Plant Pathology, 107, 7–12.

    Article  Google Scholar 

  15. Kuc, J., & Richmond, S. (1977). Aspect of the protection of cucumber against Colletotrichum lagenarium by Colletotrichum lagenarium. Phytopathology, 67, 533–536.

    Article  Google Scholar 

  16. Manandhar, H. K., Lyngs Jørgensen, H. J., Mathur, S. B., & Smedegaard-Petersen, V. (1998). Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the nonrice pathogen Bipolaris sorokiniana. Phytopathology, 88, 735–739.

    PubMed  Article  CAS  Google Scholar 

  17. Métraux, J. P. (2001). Systemic acquired resistance and salicylic acid: current state of knowledge. European Journal of Plant Pathology, 107, 13–18.

    Article  Google Scholar 

  18. Nam, M. H., Jeong, S. K., Lee, Y. S., Choi, J. M., & Kim, H. G. (2006). Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. Plant Pathology, 55, 246–249.

    Article  Google Scholar 

  19. Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316.

    PubMed  Article  CAS  Google Scholar 

  20. Raskin, I., Turner, I. M., & Melander, W. R. (1989). Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proceeding National Academy of Science USA, 86, 2214–2218.

    Article  CAS  Google Scholar 

  21. Rasmussen, J. B., Hammerschmidt, R., & Zook, M. N. (1991). Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiology, 97, 1342–1347.

    PubMed  Article  CAS  Google Scholar 

  22. Richardson, P. T., Baker, D. A., & Ho, L. C. (1982). The chemical composition of cucurbit vascular exudates. Journal of Experimental Botany, 33, 1239–1247.

    Article  CAS  Google Scholar 

  23. Ross, A. F. (1961a). Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology, 14, 329–339.

    PubMed  Article  CAS  Google Scholar 

  24. Ross, A. F. (1961b). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14, 340–358.

    PubMed  Article  CAS  Google Scholar 

  25. Ryals, J. A., Uknes, S., & Ward, E. (1994). Systemic acquired resistance. Plant Physiology, 104, 1109–1112.

    PubMed  CAS  Google Scholar 

  26. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., & Hunt, M. D. (1996). Systemic acquired resistance. The Plant Cell, 8, 1809–1819.

    PubMed  CAS  Google Scholar 

  27. Salazar, S. M., Castagnaro, A. P., Arias, M. E., Chalfoun, N. R., Tonello, U., & Díaz Ricci, J. C. (2007). Induction of a defence response in strawberry mediated by a avirulent strain of Colletotrichum. European Journal of Plant Pathology, 117, 109–122.

    Article  Google Scholar 

  28. Samac, D. A., Hironaka, C. M., Yallaly, P. E., & Shah, D. M. (1990). Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiology, 93, 907–914.

    PubMed  Article  CAS  Google Scholar 

  29. Shetty, N. P., Kristensen, B. K., Newman, M. A., Møller, K., Gregersen, P. L., & Jørgensen, H. J. L. (2003). Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology, 62, 333–346.

    Article  CAS  Google Scholar 

  30. Shishido, M., Miwa, C., Usami, T., Amemiya, Y., & Johnson, K. B. (2005). Biological control effficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different environments. Phytopathology, 95, 1072–1080.

    PubMed  Article  Google Scholar 

  31. Shoresh, M., Yedidia, I., & Chet, I. (2005). Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, 95, 76–84.

    PubMed  Article  CAS  Google Scholar 

  32. Smith, B. J. (1986). First report of Colletotrichum acutatum on strawberry in the United States. Plant Disease, 70, 1074.

    Article  Google Scholar 

  33. Smith, B. J., & Black, L. L. (1990). Morphological, cultural and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Disease, 74, 69–76.

    Article  Google Scholar 

  34. Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 11, 1187–1194.

    Article  CAS  Google Scholar 

  35. Tian, S. P., Yao, H. J., Deng, X., Xu, X. B., Qin, G. Z., & Chan, Z. L. (2007). Characterization and expression of β-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii. Phytopathology, 97, 260–268.

    PubMed  Article  CAS  Google Scholar 

  36. Vellicce, G. R., Díaz-Ricci, J. C., Hernández-García, L., & Castagnaro, A. P. (2006). Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Research, 15, 57–68.

    PubMed  Article  CAS  Google Scholar 

  37. Walters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology, 95, 1368–1373.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT, 26/D423); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (Préstamo BID PICT 2008–2105). APC and JDR are members of CONICET. SMS is member of INTA; NRCh and CFG are Fellows of CONICET. APC is also member of EEAOC of Tucumán. We are also grateful to Dr. Cecilia Díaz (FAZ, UNT) for data analysis.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. P. Castagnaro or J. C. Díaz Ricci.

Additional information

This paper is part of the first author’s doctoral thesis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salazar, S.M., Grellet, C.F., Chalfoun, N.R. et al. Avirulent strain of Colletotrichum induces a systemic resistance in strawberry. Eur J Plant Pathol 135, 877–888 (2013). https://doi.org/10.1007/s10658-012-0134-y

Download citation

Keywords

  • Anthracnose
  • Colletotrichum acutatum
  • Colletotrichum fragariae
  • Defence
  • Fragaria × ananassa
  • Oxidative burst
  • Systemic acquired resistance