European Journal of Plant Pathology

, Volume 135, Issue 4, pp 817–829 | Cite as

Combining sanitation and disease modelling for control of grapevine powdery mildew

  • Tito Caffi
  • Sara Elisabetta Legler
  • Riccardo Bugiani
  • Vittorio Rossi


Chasmothecia of Erysiphe necator form in one season, survive winter and discharge ascospores that cause primary infections and trigger powdery mildew epidemics in the next season. A strategy for powdery mildew control was developed based on (i) the reduction in overwintering chasmothecia and on (ii) spring fungicide applications to control ascosporic infections timed based on estimate risk (two to five sprays per season). Several fungicides, the hyperparasite Ampelomyces quisqualis, and a mineral oil product were first tested as separate applications in a greenhouse and in vineyards. In the greenhouse, A. quisqualis suppressed chasmothecia formation by 41 %; fungicides and mineral oil suppressed chasmothecia formation by 63 % and ascospore viability by 71 %. In vineyards, application of boscalid + kresoxim-methyl or meptyldinocap once after harvest, as well as application of A. quisqualis pre- and post-harvest, delayed disease onset and epidemic development in the following season by 1 to 3 weeks and lowered disease severity (up to the pea-sized berry stage) by 56 to 63 %. Risk-based applications of sulphur and of synthetic fungicides provided the same control as the grower spray program but required fewer applications (average reduction of 47 %). Sanitation strategies were then tested by combining products and application times (late-season, and/or pre-bud break, and/or spring). Adequate disease control with a reduced number of sprays was achieved with the following combination: two applications of A. quisqualis (pre- and post-harvest), one application of mineral oil before bud break, and model-based applications of sulphur fungicides between bud break and fruit set.


Overwintering Chasmothecia Ascosporic infection Fungicide scheduling Biocontrol 



This research was funded by the Emilia-Romagna Region and the following companies: Intrachem Bio Italia, Basf, Makhteshim Agan Italia, Dow AgroSciences, Cerexagri, Bayer CropScience, and Isagro Italia. The authors thank G. Pradolesi and M. Scannavini for the management of the vineyards. S.E. Legler carried out this work within the Doctoral School on the Agro-Food System (Agrisystem) of the Università Cattolica del Sacro Cuore (Italy).


  1. Angeli, D., Pellegrini, E., & Pertot, I. (2009). Occurrence of Erysiphe necator chasmothecia and their natural parasitism by Ampelomyces quisqualis. Phytopathology, 99, 704–710.PubMedCrossRefGoogle Scholar
  2. Brent, K.J., & Hollomon, D.W. (2007). Fungicide resistance in crop pathogens: how can it be managed? Croplife International, Brussels, FRAC Monograph No. 1, 2nd edition.Google Scholar
  3. Caffi, T., Rossi, V., Legler, S. E., & Bugiani, R. (2011). A mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathology, 60, 522–531.CrossRefGoogle Scholar
  4. Caffi, T., Legler, S. E., Rossi, V., & Bugiani, R. (2012). Evaluation of a warning system for early-season control of grapevine powdery mildew. Plant Disease, 96, 104–110.CrossRefGoogle Scholar
  5. Carisse, O., Bacon, R., & Lefebvre, A. (2009). Grape powdery mildew (Erysiphe necator) risk assessment based on airborne conidium concentration. Crop Protection, 28, 1036–1044.CrossRefGoogle Scholar
  6. Coombe, B. G. (1995). Adoption of a system for identifying grapevine growth stages. Australian Journal Grape Wine Research, 1(2), 104–110.CrossRefGoogle Scholar
  7. Cortesi, P., Gadoury, D. M., Seem, R. C., & Pearson, R. C. (1995). Distribution and retention of cleistothecia of Uncinula necator on bark of grapevines. Plant Disease, 79, 15–19.CrossRefGoogle Scholar
  8. Cortesi, P., Bisiach, M., Ricciolini, M., & Gadoury, D. M. (1997). Cleistothecia of Uncinula necator-an additional source of inoculum in Italian vineyards. Plant Disease, 81, 922–926.CrossRefGoogle Scholar
  9. D’Ascenzo, D., & Corvi, F. (2010). Vite, trattare gli organi ibernanti per contenere lo sviluppo dell'oidio. Terra e Vita, 3, 26–27.Google Scholar
  10. Debieu, D., Corio-Costet, M. F., Steva, H., Malosse, C., & Leroux, P. (1995). Sterol composition of the vine powdery mildew fungus, Uncinula necator: comparison on triadimenol-sensitive and resistant strains. Phytochemistry, 39, 293–300.CrossRefGoogle Scholar
  11. Dent, D. (1995). Integrated pest management. London: Chapman & Halt.Google Scholar
  12. EPPO. (1999). Guidelines for the efficacy evaluation of plant protection products. Design and analysis of efficacy evaluation trials. EPPO Bulletin, 29, 297–317.CrossRefGoogle Scholar
  13. EPPO. (2002). Guidelines for the efficacy evaluation of fungicides. Uncinula necator. EPPO Bulletin, 32, 315–318.CrossRefGoogle Scholar
  14. Erickson, E. O., & Wilcox, W. F. (1997). Distributions of sensitivities to three sterol demethylation inhibitor fungicides among populations of Uncinula necator sensitive and resistant to triadimefon. Phytopathology, 87, 784–791.PubMedCrossRefGoogle Scholar
  15. Falk, S. P., Gadoury, D. M., Cortesi, P., Pearson, R. C., & Seem, R. C. (1995). Parasitism of Uncinula necator cleistothecia by the mycoparasite Ampelomyces quisqualis. Phytopathology, 85, 794–800.CrossRefGoogle Scholar
  16. FRAC (2009). FRAC Code List © : Fungicides sorted by mode of action. Accessed 18 July 2012.
  17. Gadoury, D. M., & Pearson, R. C. (1988). Initiation, development, dispersal, and survival of cleistothecia of Uncinula necator in New York vineyards. Phytopathology, 78, 1413–1421.CrossRefGoogle Scholar
  18. Gadoury, D. M., Pearson, R. C., Riegel, D. G., Seem, R. C., Becker, C. M., & Pscheidt, J. W. (1994). Reduction of powdery mildew and other diseases by over-the-trellis applications of lime sulfur to dormant grapevines. Plant Disease, 78, 83–87.CrossRefGoogle Scholar
  19. Gadoury, D. M., Seem, R. C., Ficke, A., & Wilcox, W. F. (2003). Ontogenic resistance to powdery mildew in grape berries. Phytopathology, 93, 547–555.PubMedCrossRefGoogle Scholar
  20. Gubler, W. D., & Ypema, H. L. (1996). Occurrence of resistance in Uncinula necator to triadimefon, myclobutanil, and fenarimol in California grapevines. Plant Disease, 80, 902–909.CrossRefGoogle Scholar
  21. Halleen, F., & Holz, G. (2001). An overview of the biology, epidemiology and control of Uncinula necator (powdery mildew) on grapevine, with reference to South Africa. South African Journal of Enology and Viticulture, 22, 111–121.Google Scholar
  22. Hartman, J., & Beale, J. (2008). Powdery mildew of grape. Plant pathology fact sheet. Univ. Ky. Coop. Ext. Serv. Publ. No. PPFS-FR-S-12.Google Scholar
  23. Hed, B., & Travis, J.W. (2007). Evaluation of alternative and organic fungicides for control of black rot of Niagara grapes. Plant Disease Management Reports, 2, SMF005.Google Scholar
  24. Kiss, L., Russell, J. C., Szentivanyi, O., Xu, X., & Jeffries, P. (2004). Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonist of powdery mildew fungi. Biocontrol Science and Technology, 14, 635–651.CrossRefGoogle Scholar
  25. Legler, S.E., Caffi, T., Benuzzi, M., Ladurner, E., & Rossi, V. (2011, March). New perspectives for the use of Ampelomyces-based biofungicides for effective control of powdery mildew on grapevine. (Paper presented at the “4ème Conférence Internationale sur les Méthodes Alternatives en Protection des Cultures”, Lille).Google Scholar
  26. Legler, S. E., Caffi, T., & Rossi, V. (2012). A non-linear model for temperature-dependent development of Erysiphe necator chasmothecia on grapevine leaves. Plant Pathology, 61, 96–105.CrossRefGoogle Scholar
  27. Magarey, P.A., & Moyer, M.M. (2010, July). Towards establishing low input regimes in Australian viticulture 3: Use of ”epi-season” and ”lag phase control” in applying epidemiological knowledge of grapevine powdery mildew, to reduce the number of sprays and inoculum reservoirs for long-trm control. In A. Calonnec, F. Delmotte, B. Emmet, D. Gadoury, C. Gessler, D. Gubler, H.H. Kassemeyer, P. Magarey, M. Raynal, & R. Seem (Eds.), 6th International Workshop on Grapevine Downy and Powdery Mildew (pp. 114–116). Bordeaux: France.Google Scholar
  28. Nutter, F. W. F. (2007). The role of plant disease epidemiology in developing successful integrated disease management programs. In A. Ciancio & K. G. Mukerji (Eds.), General concepts in integrated pest and disease management (pp. 45–80). Dordrecht: Springer.CrossRefGoogle Scholar
  29. Pearson, R. C., & Gadoury, D. M. (1987). Cleistothecia, the source of primary inoculum for grape powdery mildew in New York. Phytopathology, 77, 1509–1514.CrossRefGoogle Scholar
  30. Pearson, R. C., & Goheen, A. C. (Eds.). (1988). Compendium of grape diseases. St Paul: APS Press.Google Scholar
  31. Rademacher, M.R., & Gubler, W.D. (2002). Overwintering of Uncinula necator in dormant grape buds: a histological study. In D.M. Gadoury, C. Gessler, G. Grove, W.D. Gubler, G.K. Hill, H.H. Kassemeyer, W.K. Kast, J. Rumbolz, & E.S. Scott (Eds.), 4th International Workshop on Grapevine Powdery and Downy Mildew (pp. 48–9). Napa: CA (USA).Google Scholar
  32. Rossi, V., Caffi, T., Melandri, M., & Pradolesi, G. (2006). Aggiornamenti sul mal bianco della vite. Agronomica, 2, 32–48.Google Scholar
  33. Rossi, V., Caffi, T., & Legler, S. E. (2010). Dynamics of ascospore maturation and discharge in Erysiphe necator, the causal agent of grape powdery mildew. Phytopathology, 100, 1321–1329.PubMedCrossRefGoogle Scholar
  34. Rossi, V., Caffi, T., Legler, S. E., Bugiani, R., & Frisullo, P. (2011). Dispersal of the sexual stage of Erysiphe necator in northern Italy. IOBC/WPRS Bulletin, 66, 115–121.Google Scholar
  35. Sall, M. A. (1980). Epidemiology of grape powdery mildew: a model. Phytopathology, 70, 338–342.CrossRefGoogle Scholar
  36. Savary, S., Delbac, L., Rochas, A., Taisant, G., & Willocquet, L. (2009). Analysis of nonlinear relationships in dual epidemics, and its application to the management of grapevine downy and powdery mildews. Phytopathology, 99, 930–942.PubMedCrossRefGoogle Scholar
  37. Scannavini, M., Melandri, M., & Pasqualini, E. (2009). Cocciniglie della vite, un problema in espansione. Agricoltura, 6, 91–93.Google Scholar
  38. Schilder, A. C., Rothwell, N. L., Powers, K. L., & Anderson, M. D. (2008). Fungicide efficacy in eradicating powdery mildew and reducing cleistothecium formation on grape leaves. Phytopathology, 98, S140.Google Scholar
  39. Sozzani, F., Morando, A., & Lavezzaro, S. (2010). Grapevine protection against powdery mildew in piedmont: control of on-going infections. Atti Giornate Fitopatologiche, 2, 311–316.Google Scholar
  40. Van der Plank, J. E. (1963). Plant diseases: epidemics and control. New York and London: Academic Press.Google Scholar
  41. Vandini, G., Bergamaschi, A., & Frontali, A. (2010). Cocciniglie farinose della vite strategie di lotta con polithiol. Terra e Vita, 5, 66–67.Google Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Tito Caffi
    • 1
  • Sara Elisabetta Legler
    • 1
  • Riccardo Bugiani
    • 2
  • Vittorio Rossi
    • 1
  1. 1.Istituto di Entomologia e Patologia vegetaleUniversità Cattolica del Sacro CuorePiacenzaItaly
  2. 2.Plant Protection Service, Regione Emilia-RomagnaBolognaItaly

Personalised recommendations