Skip to main content

Advertisement

Log in

Climate change impacts on plant canopy architecture: implications for pest and pathogen management

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Climate change influences on pests and pathogens are mainly plant-mediated. Rising carbon dioxide and temperature and altered precipitation modifies plant growth and development with concomitant changes in canopy architecture, size, density, microclimate and the quantity of susceptible tissue. The modified host physiology and canopy microclimate at elevated carbon dioxide influences production, dispersal and survival of pathogen inoculum and feeding behaviour of insect pests. Elevated temperature accelerates plant growth and developmental rates to modify canopy architecture and pest and pathogen development. Altered precipitation affects canopy architecture through either drought or flooding stress with corresponding effects on pests and pathogens. But canopy-level interactions are largely ignored in epidemiology models used to project climate change impacts. Nevertheless, models based on rules of plant morphogenesis have been used to explore pest and pathogen dynamics and their trophic interactions under elevated carbon dioxide. The prospect of modifying canopy architecture for pest and disease management has also been raised. We offer a conceptual framework incorporating canopy characteristics in the traditional disease triangle concept to advance understanding of host-pathogen-environment interactions and explore how climate change may influence these interactions. From a review of recent literature we summarize interrelationships between canopy architecture of cultivated crops, pest and pathogen biology and climate change under four areas of research: (a) relationships between canopy architecture, microclimate and host-pathogen interaction; (b) effect of climate change related variables on canopy architecture; (c) development of pests and pathogens in modified canopy under climate change; and (d) pests and pathogen management under climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexander, H. M. (2010). Disease in natural plant populations, communities, and ecosystems: insights into ecological and evolutionary processes. Plant Disease, 94, 492–503.

    Article  Google Scholar 

  • Ando, K., & Grumet, R. (2006). Evaluation of altered cucumber plant architecture as a means to reduce Phytophthora capsici disease incidence on cucumber fruit. Journal of the American Society for Horticultural Science, 131, 491–498.

    Google Scholar 

  • Ando, K., Grumet, R., Terpstra, K., & Kelly, J. D. (2007). Manipulation of plant architecture to enhance crop disease control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2.

  • Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026–2032.

    Google Scholar 

  • Ayres, M. P. (1993). Plant defense, herbivory, and climate change. In P. M. Kareiva, J. G. Kingsolver, & R. B. Huey (Eds.), Biotic interactions and global change (pp. 75–94). Sunderland: Sinauer Associates.

    Google Scholar 

  • Baccar, R., Fournier, C., Dornbusch, T., Andrieu, B., Gouache, D., & Robert, C. (2011). Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic–virtual plant model. Annals of Botany, 108, 1179–1194.

    Article  PubMed  Google Scholar 

  • Barillot, R., Combes, D., Huynh, P., & Escobar‑Gutiérrez, A. J. (2012). Ideotype construction from an architectural model of pea. Paper presented at the ECA International Conference on Plant and Canopy Architecture Impact on Disease Epidemiology and Pest Development. July 1–5, 2012, Rennes, France. European Journal of Plant Pathology (this volume)

  • Barnabas, B., Jager, K., & Ferher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31, 11–38.

    CAS  Google Scholar 

  • Barta, A., & Schmitthenner, A. (1986). Interaction between flooding stress and Phytophthora root rot among alfalfa cultivars. Plant Disease, 70, 310–313.

    Article  Google Scholar 

  • Bearchell, S. J., Fraaije, B. A., Shaw, M. W., & Fitt, B. D. L. (2005). Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proceedings of the National Academy of Sciences, 102, 5438–5442.

    Article  CAS  Google Scholar 

  • Blodgett, J. T., Kruger, E. L., & Stanosz, G. R. (1997). Sphaeropsis sapinea and water stress in a red pine plantation in central Wisconsin. Phytopathology, 87, 429–434.

    Article  PubMed  CAS  Google Scholar 

  • Brosi, G. B., McCulley, R. L., Bush, L. P., Nelson, J. A., Classen, A. T., & Norby, R. J. (2011). Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytologist, 189, 797–805.

    Article  PubMed  Google Scholar 

  • Burdon, J. J., Thrall, P. H., & Ericson, L. (2006). The current and future dynamics of disease in plant communities. Annual Review of Phytopathology, 44, 19–39.

    Article  PubMed  CAS  Google Scholar 

  • Burie, J. B., Langlais, M., & Calonnec, A. (2011). Switching from a mechanistic model to a continuous model to study at different scales the effect of vine growth on the dynamic of a powdery mildew epidemic. Annals of Botany, 107, 885–895.

    Article  PubMed  Google Scholar 

  • Butler, D. L. (1996). The presence of water on leaf surfaces and its importance for microbes and insects. In G. Kerstiens (Ed.), Plant cuticles: An integrated functional approach (pp. 267–282). Oxford: BIOS Scientific Publishers.

    Google Scholar 

  • Caffarra, A., Rinaldi, M., Eccel, E., Rossi, V., & Pertot, I. (2012). Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agriculture, Ecosystems and Environment, 148, 89–101.

    Article  Google Scholar 

  • Calonnec, A., Burie, J.B., Langlais, M., Guyader, S., Saint-Jean, S., Sache, I., & Tivoli, B. (2012). Impact of plant growth and architecture on pathogen processes and consequences for the epidemic behaviour. Paper presented at the ECA International Conference on Plant and Canopy Architecture Impact on Disease Epidemiology and Pest Development. July 1–5, 2012, Rennes, France. European Journal of Plant Pathology (this volume)

  • Calonnec, A., Cartolaro, P., Naulin, J. M., Bailey, D., & Langlais, M. (2008). A host-pathogen simulation model: powdery mildw of grapevine. Plant Pathology, 57, 493–508.

    Article  Google Scholar 

  • Cappaert, M. R., & Powelson, M. L. (1990). Canopy density and microclimate effects on the development of aerial stem rot of potatoes. Phytopathology, 80, 353–356.

    Article  Google Scholar 

  • Casadebaig, P., Langlais, M., Fournier, C., & Faivre, R. (2012). Design steps of a generic model to simulate air-borne diseases as a function of crop architecture: case of the archidemio project. Paper presented at the ECA International Conference on Plant and Canopy Architecture Impact on Disease Epidemiology and Pest Development. July 1–5, 2012, Rennes, France. European Journal of Plant Pathology (this volume)

  • Chakraborty, S., & Datta, S. (2003). How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytologist, 159, 733–742.

    Article  CAS  Google Scholar 

  • Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathology, 60, 2–14.

    Article  Google Scholar 

  • Chakraborty, S., Pangga, I. B., Lupton, J., Hart, L., Room, P. M., & Yates, D. (2000). Production and dispersal of Colletotrichum gloeosporioides spores on Stylosanthes scabra under elevated CO2. Environmental Pollution, 108, 381–387.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty, S., Pangga, I. B., & Roper, M. M. (2012). Climate change and multitrophic interactions in soil: the primacy of plants and functional domains. Global Change Biology, 18, 2111–2125.

    Article  Google Scholar 

  • Chapman, S., Chakraborty, S., Dreccer, F., & Howden, M. (2012). Plant adaptation to climate change – opportunities and needs in breeding. Crop and Pasture Science, 63, 251–268.

    Article  Google Scholar 

  • Chelle, M. (2005). Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for? New Phytologist, 166, 781–790.

    Article  PubMed  Google Scholar 

  • Chelle, M., Pincebourde, S., Sache, I., Saudreau, M., Saint-Jean, S., Bussière, F., Huber, L., Bernard, F., Leca, A., Caillon, R. & Gigot, C. (2012). Climate and plant pest dynamics: scales matter. Paper presented at the ECA International Conference on Plant and Canopy Architecture Impact on Disease Epidemiology and Pest Development. July 1–5, 2012, Rennes, France. European Journal of Plant Pathology (this volume)

  • Chown, S. L. (2012). Insects. In K. B. Storey & K. K. Tanino (Eds.), Temperature adaptation in a changing climate: Nature at risk (pp. 45–66). Wallingford: CAB International.

    Google Scholar 

  • Classen, A. T., Hart, S. C., Whitman, T. G., Cobb, N. S., & Koch, G. W. (2005). Insect infestations linked to shifts in microclimate: important climate change implications. Soil Science Society of America Journal, 69, 2049–2057.

    Article  CAS  Google Scholar 

  • Coakley, S. M., Scherm, H., & Chakraborty, S. (1999). Climate change and plant disease management. Annual Review of Phytopathology, 37, 399–426.

    Article  PubMed  CAS  Google Scholar 

  • Coll, M., & Hughes, L. (2008). Effects of elevated CO2 on an insect omnivore: a test for nutritional effects mediated by host plants and prey. Agriculture, Ecosystems and Environment, 123, 271–279.

    Article  CAS  Google Scholar 

  • Cornelissen, T. (2011). Climate change and its effects on terrestial insect and herbivory patterns. Neotropical Entomology, 40, 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Coyne, D. P. (1980). Modification of plant architecture and crop yield by breeding. Hortscience, 15, 244.

    Google Scholar 

  • Craufurd, P. Q., & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental Botany, 60, 2529–2539.

    Article  PubMed  CAS  Google Scholar 

  • Debaeke, P., & Moinard, J. (2010). Effect of crop management on epidemics of phomopsis stem canker (Diaporthe helianthi) for susceptible and tolerant sunflower cultivars. Field Crops Research, 115, 50–60.

    Article  Google Scholar 

  • Delaney, K. J., & Macedo, T. B. (2001). The impact of herbivory on plants: Yield, fitness, and population dynamics. In R. K. D. Peterson & L. G. Higley (Eds.), Biotic stress and yield loss (pp. 135–160). Boca Raton: CRC Press.

    Google Scholar 

  • Dermody, O., O’Neill, B. F., Zangerl, A. R., Berenbaum, M. R., & DeLucia, E. H. (2008). Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean ecosystem. Arthropod-Plant Interactions, 2, 125–135.

    Article  Google Scholar 

  • Deshpande, R. Y., Hubbard, K. G., Coyne, D. P., Steadman, J. R., & Parkhurst, A. M. (1995). Estimating leaf wetness in dry bean canopies as a prerequisite to evaluating white mold disease. Agronomy Journal, 87, 613–619.

    Article  Google Scholar 

  • Desprez-Loustau, M., Marçais, B., Nageleisen, L., Piou, D., & Vannini, A. (2006). Interactive effects of drought and pathogens in forest trees. Annals of Forest Science, 63, 597–612.

    Article  Google Scholar 

  • Dorr, G., Hanan, J., Adkins, S., Hewitt, A., & Noller, B. (2008). Spray deposition on plant surfaces: a modeling approach. Functional Plant Biology, 35, 988–996.

    Article  Google Scholar 

  • Eastburn, D., Degennaro, M., Delucia, E., Dermody, O., & Mcelrone, A. (2010). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16, 320–330.

    Article  Google Scholar 

  • Eastburn, D. M., McElrone, A. J., & Bilgin, D. D. (2011). Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathology, 60, 54–69.

    Article  Google Scholar 

  • European Food Safety Agency (2012). Modeling, predicting and mapping the emergence of Aflatoxins in cereals in the EU due to climate change.

  • Emery, K. M., & English, J. T. (1994). Development of foliar diseases of alfalfa in relation to microclimate, host growth, and fertility. Phytopathology, 84, 1263–1269.

    Article  Google Scholar 

  • Espirito-Santo, M. M., Neves, F. S., Andrade-Neto, F. R., & Fernandes, G. W. (2007). Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, 153, 353–364.

    Article  PubMed  Google Scholar 

  • Estrella, N., Sparks, T. H., & Menzel, A. (2007). Trends and temperature response in the phenology of crops in Germany. Global Change Biology, 13, 1737–1747.

    Article  Google Scholar 

  • Everhart, S. E., Askew, A., Seymour, L., Holb, I. J., & Scherm, H. (2011). Characterization of three-dimensional spatial aggregation and association patterns of brown rot symptoms within intensively mapped sour cherry trees. Annals of Botany, 108, 1195–1202.

    Article  PubMed  Google Scholar 

  • Fernandez, M. R., Clarke, J. M., & DePauw, R. M. (2002). The effect of plant height on tan spot on durum wheat in Southern Saskatchewan. Crop Science, 42, 159–164.

    Article  PubMed  Google Scholar 

  • Fleischmann, F., Raidl, S., & Osswald, W. F. (2010). Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Environmental Pollution, 158, 1051–1060.

    Google Scholar 

  • Gan, Y. T., Liu, P. H., & McDonald, C. (2003). Severity of Ascochyta blight in relation to leaf type in chickpea. Crop Science, 43, 2291–2294.

    Article  Google Scholar 

  • Garbutt, K., Williams, W. E., & Bazzaz, F. A. (1990). Analysis of the differential response of five annuals to elevated CO2 during growth. Ecology Letters, 71, 1185–1194.

    Article  Google Scholar 

  • Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology, 44, 489–509.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, K. A., Forbes, G. A., Savary, S., Skelsey, P., Sparks, A. H., Valdivia, C., et al. (2011). Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathology, 60, 15–30.

    Article  Google Scholar 

  • Giesler, L. J., Yuen, G. Y., & Horst, G. L. (1996). The microclimate in tall fescue turf as affected by canopy density and its influence on brown patch disease. Plant Disease, 80, 389–394.

    Article  Google Scholar 

  • Grodzinski, G., Schmidt, J. M., Watts, B., Taylor, J., Bates, S., Dixon, M. A., et al. (1999). Regulating plant/insect interactions using CO2 enrichment in model ecosystems. Advances in Space Research, 24, 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Haile, F. J. (2001a). Drought stress, insects and yield loss. In R. K. D. Peterson & L. G. Higley (Eds.), Biotic stress and yield loss (pp. 117–134). Boca Raton: CRC Press.

    Google Scholar 

  • Haile, F. J. (2001b). The influence of cultivar and plant architecture on yield loss. In R. K. D. Peterson & L. G. Higley (Eds.), Biotic stress and yield loss (pp. 99–116). Boca Raton: CRC Press.

    Google Scholar 

  • Hannukkala, A. O., Kaukoranta, T., Lehtinen, A., & Rahkonen, A. (2007). Late-blight epidemics on potato in Finland, 1933–2002; increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathology, 56, 167–176.

    Article  Google Scholar 

  • Harrington, R. (2002). Insect pests and global environmental change. In I. Douglas (Ed.), Encyclopedia of global environmental change, vol. 3 (pp. 381–386). Chichester: John Wiley & Sons.

    Google Scholar 

  • Hatfield, J. L. (1982). Modification of the microclimate via management. In J. L. Hatfield & I. J. Thomason (Eds.), Biometeorology in integrated pest management (pp. 147–170). New York: Academic.

    Google Scholar 

  • Huber, L., & Gillespie, T. J. (1992). Modeling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology, 30, 553–577.

    Article  Google Scholar 

  • Idso, S. B. (1989). CO 2 and global change: Earth in transition. Arizona: IBR Press.

    Google Scholar 

  • Isichaikul, S., Fujimura, K., & Ichikawa, T. (1994). Humid microenvironment prerequisite for the survival and growth of nymphs of the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Researches on Population Ecology, 36, 23–28.

    Article  Google Scholar 

  • Jactel, H., Petit, J., Desprez-Loustau, M. L., Delzon, S., Piou, D., Battisti, A., et al. (2012). Drought effects on damage by forest insects and pathogens: a meta-analysis. Global Change Biology, 18, 267–276.

    Article  Google Scholar 

  • Jones, R. A. C. (2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141, 113–130.

    Article  PubMed  CAS  Google Scholar 

  • Joutei, A. B., Roy, J., Van Impe, G., & Lebrun, P. (2000). Effect of elevated CO2 on the demography of a leaf-sucking mite feeding on bean. Oecologia, 123, 75–81.

    Article  Google Scholar 

  • Juroszek, P., & von Tiedemann, A. (2011). Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathology, 60, 100–112.

    Article  Google Scholar 

  • Jwa, N.-S., & Walling, L. L. (2001). Influence of elevated CO2 concentration on disease development in tomato. New Phytologist, 149, 509–518.

    Article  CAS  Google Scholar 

  • Kerslake, J. E., Woodin, S. J., & Hartley, S. E. (1998). Effects of carbon dioxide and nitrogen enrichment on a plant-insect interaction: the quality of Calluna vulgaris as host for Operophtera brumata. New Phytologist, 140, 43–53.

    Article  Google Scholar 

  • Khush, G. S. (1995). Breeding the yield frontier of rice. GeoJournal, 35, 329–332.

    Article  Google Scholar 

  • Kipp, E. (2008). Heat stress effects on growth and development in three ecotypes of varying latitude of Arabidopsis. Applied Ecology and Environmental Research, 6, 1–14.

    Google Scholar 

  • Kobayashi, T., Ishiguro, K., Nakajima, T., Kim, H. Y., Okada, M., & Kobayashi, K. (2006). Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. Phytopathology, 96, 425–431.

    Article  PubMed  CAS  Google Scholar 

  • Kocsis, M., & Hufnagel, L. (2011). Impacts of climate change on Lepidoptera species and communities. Applied Ecology and Environmental Research, 9, 43–72.

    Google Scholar 

  • Koini, M. A., Alvey, L., Allen, T., Tilley, C. A., Harberd, N. P., Whitelam, G. C., et al. (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Current Biology, 19, 408–413.

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski, T. T. (1997). Responses of woody plants to flooding and salinity Tree Physiology Monograph No. 1.

  • Kuhrt, U., Samietz, J., & Dorn, S. (2006). Plant architecture, hail nets and thermal behaviour influencing development rate and modelling of the codling moth. Acta Horticulturae, 707, 197–203.

    Google Scholar 

  • Lake, J. A., & Wade, R. N. (2009). Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens. Journal of Experimental Botany, 60, 3123–3131.

    Article  PubMed  CAS  Google Scholar 

  • Landa, B., Navas-Cortés, J., Jiménez-Gasco, M., Katan, J., Retig, B., & Jiménez-Díaz, R. (2006). Temperature response of chickpea cultivars to races of Fusarium oxysporum f. sp. ciceris, causal agent of fusarium wilt. Plant Disease, 90, 365–374.

    Article  Google Scholar 

  • Landsberg, J., & Sands, P. (2011). Physiological ecology of forest production: Principles, processes, and models. Burlington: Academic.

    Google Scholar 

  • Laza, M. R. C., Peng, S., Akita, S., & Saka, H. (2003). Contribution of biomass partitioning and translocation to grain yield under sub-optimum growing conditions in irrigated rice. Plant Production Science, 56, 41–71.

    Google Scholar 

  • Legreve, A., & Duveiller, E. (2010). Preventing potential diseases and pest epidemics under a changing climate. In M. Reynolds (Ed.), Climate change and crop production (pp. 50–70). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Lessin, R. C., & Ghini, R. (2009). Effect of increased atmospheric CO2 concentration on powdery mildew and growth of soybean plants. Tropical Plant Pathology, 34, 385–392.

    Article  Google Scholar 

  • Lindhout, P., & Pet, G. (1990). Effects of CO2 enrichment on young plant-growth of 96 genotypes of tomato (Lycopersicon-esculentum). Euphytica, 51, 191–196.

    CAS  Google Scholar 

  • Luo, Q. (2011). Temperature thresholds and crop production: a review. Climatic Change, 109, 583–598.

    Article  Google Scholar 

  • Mahan, J. R., McMichael, B. L., & Wanjura, D. F. (1995). Methods for reducing the adverse effects of temperatures stress on plants: a review. Environmental and Experimental Botany, 35, 251–258.

    Article  Google Scholar 

  • Malstrom, C. M., & Field, C. B. (1997). Virus-induced differences in the response of oat plants to elevated carbon dioxide. Plant, Cell & Environment, 20, 178–188.

    Article  Google Scholar 

  • Manning, W. J., & von Tiedemann, A. (1995). Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environmental Pollution, 88, 219–245.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P., & Johnson, S. N. (2011). Evidence that elevated CO2 reduces resistance to the European large raspberry aphid in some raspberry cultivars. Journal of Applied Entomology, 135, 237–240.

    Article  Google Scholar 

  • Masters, G. J., Brown, V. K., Clarke, I. P., Whittaker, J. B., & Hollier, J. A. (1998). Direct and indirect effects of climate change on insect herbivores: Auchenorrhyncha (Homoptera). Ecological Entomology, 23, 45–52.

    Article  Google Scholar 

  • Mayrose, M., Kane, N. C., Mayrose, I., Dlugosch, K. M., & Reiseberg, L. H. (2011). Increased growth in sunflower correlats with reduced defences and altered gene expression in response to biotic and abiotic stress. Molecular Ecology, 20, 4683–4694.

    Google Scholar 

  • McElrone, A. J., Reid, C. D., Hoye, K. A., Hart, E., & Jackson, R. B. (2005). Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Global Change Biology, 11, 1828–1836.

    Article  Google Scholar 

  • McElrone, A. J., Sherald, A. J., & Forseth, I. N. (2001). Effects of water stress on symptomatology and growth of Parthenocissus quinquefolia infected by Xylella fastidiosa. Plant Disease, 85, 1160–1164.

    Article  Google Scholar 

  • Melloy, P., Hollaway, G., Luck, J. O., Norton, R. O. B., Aitken, E., & Chakraborty, S. (2010). Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Global Change Biology, 16, 3363–3373.

  • Milus, E. A., Kristensen, K., & Hovmøller, M. S. (2009). Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology, 99, 89–94.

  • Monteith, J. L., & Unsworth, M. H. (1990). Principles of environmental physics (2nd ed.). London: Edward Arnold.

    Google Scholar 

  • Myster, J., & Moe, R. (1995). Effect of diurnal temperature alternations on plant morphology in some greenhouse crops-a mini review. Scientia Horticulturae, 62, 205–215.

    Article  Google Scholar 

  • Nobel, P. S. (1991). Physiochemical and environmental plant physiology. New York: Academic.

    Google Scholar 

  • Oh-e, I., Saitoh, K., & Kuroda, T. (2007). Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Production Science, 10, 412–422.

    Article  Google Scholar 

  • Olofsson, J., Ericson, L., Torp, M., Stark, S., & Baxter, R. (2011). Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nature Climate Change, 1, 220–223.

    Article  CAS  Google Scholar 

  • Olson, A. J., Pataky, J. K., D’Arcy, C. J., & Ford, R. E. (1990). Effects of drought stress and infection by maize dwarf mosaic virus on sweet corn. Plant Disease, 74, 147–151.

    Article  Google Scholar 

  • Orlandini, S., Bindi, M., & Howden, M. (2009). Plant biometeorology and adaptation. In K. L. Ebi, I. Burton, & G. R. McGregor (Eds.), Biometeorology for adaptation to climate variability and change (pp. 107–129). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ou, S. H. (1985). Rice diseases (2nd ed.). England: Commonwealth Mycological Institute.

    Google Scholar 

  • Pachauri, R. K., & Reisinger, A. (2007). Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva.

  • Pallas, B., Loi, C., Christophe, A., Cournède, P. H., & Lecoeur, J. (2011). Comparison of three approaches to model grapevine organogenesis in conditions of fluctuating temperature, solar radiation and soil water content. Annals of Botany, 107, 729–745.

    Article  PubMed  CAS  Google Scholar 

  • Pangga, I. B. (2002). Effects of elevated CO 2 on plant architecture of Stylosanthes scabra and epidemiology of anthracnose disease. Brisbane: University of Queensland.

  • Pangga, I. B., Chakraborty, S., & Yates, D. (2004). Canopy size and induced resistance in Stylosanthes scabra determine anthracnose severity at high CO2. Phytopathology, 94, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Pangga, I. B., Hanan, J., & Chakraborty, S. (2011). Pathogen dynamics in a crop canopy and their evolution under changing climate. Plant Pathology, 60, 70–81.

    Article  Google Scholar 

  • Pangga, I. B., Teng, P. S., & Raymundo, A. D. (1996). Blast development on the new rice plant type in relation to canopy structure, microclimate, and crop management practices. Philippine Phytopathology, 32, 18–34.

    Google Scholar 

  • Paul, P. A., & Munkvold, G. P. (2005). Influence of temperature and relative humidity on sporulation of Cercospora zeae-maydis and expansion of gray leaf spot lesions on maize leaves. Plant Disease, 89, 624–630.

    Article  Google Scholar 

  • Pautasso, M., Doring, T. F., Garbelotto, M., Pellis, L., & Jeger, M. J. (2012). Impacts of climate change on plant diseases - opinions and trends. European Journal of Plant Pathology, 133, 295–313.

    Article  Google Scholar 

  • Peng, S., Khush, G. S., Virk, P., Tang, Q., & Zou, Y. (2008). Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 108, 32–38.

    Article  Google Scholar 

  • Percy, K., Awmack, C., Lindroth, R., Kubiske, M., Kopper, B., Isebrands, J., et al. (2002). Altered performance of forest pests under atmospheres enriched by C02 and O3. Nature, 420, 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, R. S., Reynolds, M. P., Mathews, K. L., McIntyre, C. L., Olivares-Villegas, J. J., & Chapman, S. C. (2010). Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical and Applied Genetics, 121, 1001–1021.

    Article  PubMed  Google Scholar 

  • Plaut, J. L., & Berger, R. D. (1980). Development of Cercosporidium personatum in three peanut canopy layers. Peanut Science, 7, 46–49.

    Article  Google Scholar 

  • Plessl, M., Elstnera, E. F., Rennenbergb, H., Habermeyera, J., & Heisera, I. (2007). Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants. Environmental and Experimental Botany, 60, 447–457.

    Article  CAS  Google Scholar 

  • Poorter, H., & Perez-Soba, M. (2002). Plant growth at elevated CO2. In H. A. Mooney & J. G. Canadell (Eds.), Encyclopedia of global environmental change (Vol. 2 The Earth system: biological and ecological dimensions of global environmental change, pp. 489–496). Chichester: John Wiley & Sons.

  • Pritchard, S. G., Rogers, H. H., Prior, S. A., & Peterson, C. M. (1999). Elevated CO2 and plant structure: a review. Global Change Biology, 5, 807–837.

  • Reinhardt, D., & Kuhlemeier, C. (2002). Plant architecture. EMBO Reports, 3, 846–851.

    Article  PubMed  CAS  Google Scholar 

  • Riikonen, J., Syrjala, L., Tulva, I., Mand, P., Oksanen, E., Poteri, M., et al. (2008). Stomatal characteristics and infection biology of Pyrenopeziza betulicola in Betula pendula trees grown under elevated CO2 and O3. Environmental Pollution.

  • Rotem, J. (1982). Modification of plant canopy and its impact on plant disease. In J. L. Hatfield & I. J. Thomason (Eds.), Biometeorology in integrated pest management (pp. 327–342). New York: Academic.

    Google Scholar 

  • Royle, D. J., & Butler, D. R. (1986). Epidemiological significance of liquid water in crop canopies and its role in disease forecasting. In P. G. Ayres & L. Boddy (Eds.), Water, fungi, and plants (pp. 139–156). Cambridge: Cambridge University Press.

    Google Scholar 

  • Savary, S., Castilla, N. P., Elazegui, F. A., & Teng, P. S. (2005). Multiple effects of two drivers of agricultural change, labour shortage and water scarcity, on rice pest profiles in tropical Asia. Field Crops Research, 91, 263–271.

    Article  Google Scholar 

  • Scherm, H., Everhart, S.E., Askew, A., & Seymour, L. (2012). Disease distribution in complex three-dimensional canopies. Paper presented at the ECA International Conference on Plant and Canopy Architecture Impact on Disease Epidemiology and Pest Development. July 1–5, 2012, Rennes, France. European Journal of Plant Pathology (this volume)

  • Scherm, H., & Yang, X. B. (1998). Atmospheric teleconnection patterns associated with wheat stripe rust disease in North China. International Journal of Biometeorology, 42, 28–33.

    Article  Google Scholar 

  • Schmitz, H. F., & Grant, R. H. (2009). Precipitation and dew in a soybean canopy: spatial variations in leaf wetness and implications for Phakopsora pachyrizi infection. Agriculture and Forest Meteorology, 149, 1621–1627.

    Article  Google Scholar 

  • Shao, H. B., Chu, L. Y., Jaleel, C. A., & Zhao, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331, 215–225.

    Article  PubMed  Google Scholar 

  • Sharma, R. C., Duveiller, E., & Ortiz-Ferrara, G. (2007). Progress and challenge towards reducing wheat spot blotch threat in the Eastern Gangetic Plains of South Asia: is climate change already taking its toll? Field Crops Research, 103, 109–118.

    Article  Google Scholar 

  • Siebold, M., & von Tiedemann, A. (2012). Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fungal Ecology, 5, 62–72.

    Article  Google Scholar 

  • Simpson, K. L. S., Jackson, G. E., & Grace, J. (2012). The response of aphids to plant water stress - the case of Myzus persicae and Brassica oleracea var. capitata. Entomologia Experimentalis et Applicata, 142, 191–202.

    Article  Google Scholar 

  • Smith, R. C. G., Heritage, A. D., Stapper, M., & Barrs, H. D. (1986). Effect of stripe rust (Puccinia striiformis west.) and irrigation on the yield and foliage temperature of wheat. Field Crops Research, 14, 39–51.

    Google Scholar 

  • Smyrnioudis, I., Harrington, R., Hall, M., Katis, N., & Clark, S. (2001). Effect of temperature on variation in transmission of a BYDV PAV-like isolate by clones of Rhopalosiphium padi and Sitobion avenae. European Journal of Plant Pathology, 107, 167–173.

    Article  Google Scholar 

  • Stiling, P., Moon, D., Hunter, M. D., Colson, J., Ross, A. M., Hymus, G. J., et al. (2003). Elevated CO2 lowers relative and absolute herbivore density across all species of a scrub-oak forest. Oecologia, 134, 82–87.

    Article  PubMed  Google Scholar 

  • Stiling, P., Moon, D., Rossi, A., Hungate, B. A., & Drake, B. (2009). Seeing the forest for the trees: long-term exposure to elevated CO2 increases some herbivore densities. Global Change Biology, 15, 1895–1902.

    Article  Google Scholar 

  • Stolzy, L. H., & Sojka, R. E. (1984). Effects of flooding on plant disease. In T. T. Kozlowski (Ed.), Flooding and plant growth (pp. 221–264). Orlando: Academic.

    Google Scholar 

  • Strengbom, J., & Reich, P. B. (2006). Elevated [CO2] and increased N supply reduce leaf disease and related photosynthetic impacts on Solidago rigida. Oecologia, 149, 519–525.

    Article  PubMed  Google Scholar 

  • Sudderth, E. A., Stinson, K. A., & Bazzaz, F. A. (2005). Host-specific aphid population responses to elevated CO2 and increased N availability. Global Change Biology, 11, 1997–2008.

    Google Scholar 

  • Sutherst, R. W., Constable, F., Finlay, K. J., Harrington, R., Luck, J., & Zalucki, M. P. (2011). Adapting to crop pest and pathogen risks under climate change. Wiley Interdisciplinary Reviews: Climate Change, 2, 220–237.

    Article  Google Scholar 

  • Thomas, J. F., & Harvey, C. N. (1983). Leaf anatomy of four species grown under continuous CO2 enrichment. Botanical Gazette, 144, 303–309.

    Article  Google Scholar 

  • Trotter, R. T., Cobb, N. S., & Whitham, T. G. (2008). Arthropod community diversity and trophic structure: a comparison between extremes of plant stress. Ecological Entomology, 33, 1–11.

    Article  Google Scholar 

  • Verma, R., & Tomar, S. (2010). Influence of mango tree canopy on the infestation of mango leaf webber Orthaga euadrusalis Walker (Pyralidae: Lepidoptera). Insect Environment, 15, 154–155.

    Google Scholar 

  • Webb, K. M., Ona, I., Bai, J., Garrett, K. A., Mew, T., Cruz, C. M. V., et al. (2011). A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytologist, 185, 568–576.

    Article  CAS  Google Scholar 

  • West, J. S., Townsend, J. A., Stevens, M., & Fitt, B. D. L. (2012). Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. European Journal of Plant Pathology, 133, 315–331.

    Article  Google Scholar 

  • Wiik, L., & Ewaldz, T. (2009). Impact of temperature and precipitation on yield and plant diseases of winter wheat in southern Sweden 1983–2007. Crop Protection, 28, 952–962.

    Article  Google Scholar 

  • Wilcox, W. F., & Mircetich, S. M. (1985). Effects of flooding duration on the development of Phytophthora root and crown rots of cherry. Phytopathology, 75, 1451–1455.

    Article  Google Scholar 

  • Willocquet, L., Fernandez, L., & Savary, S. (2000). Effect of various crop establishment methods practised by Asian farmers on epidemics of rice sheath blight caused by Rhizoctonia solani. Plant Pathology, 49, 346–354.

    Article  Google Scholar 

  • Willocquet, L., Noel, M., Hamilton, R. S., & Savary, S. (2011). Susceptibility of rice to sheath blight: an assessment of the diversity of rice germplasm according to genetic groups and morphological traits. Euphytica, 183, 227–241.

    Article  Google Scholar 

  • Wilson, P., & Chakraborty, S. (1996). The virtual plant: a New tool for the study and management of plant diseases. Crop Protection, 17, 231–239.

    Article  Google Scholar 

  • Wolfe, D. W., Ziska, L. H., Petzoldt, C., Seaman, A., Chase, L., & Hayhoe, K. (2008). Projected change in climate thresholds in the Northern U.S.: implications for crops, pests, livestock, and farmers. Mitigation and Adaptation Strategies for Global Change, 13, 555–575.

    Article  Google Scholar 

  • Woods, A. K., Coates, D., & Hamann, A. (2005). Is an unprecedented Dothistroma needle blight epidemic related to climate change? Bioscience, 55, 761–769.

    Article  Google Scholar 

  • Wotton, H. R., & Strange, R. N. (1987). Increased susceptibility and reduced phytoalexin accumulation in drought-stressed peanut kernels challenged with Aspergillus flavus. Applied and Environmental Microbiology, 53, 270–273.

    PubMed  CAS  Google Scholar 

  • Wu, W., Huang, J., Cui, K., Nie, L., Wang, Q., Yang, F., et al. (2012). Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants. Field Crops Research, 128, 1–8.

    Article  Google Scholar 

  • Yáñez-López, R., Torres-Pacheco, I., Guevara-González, R. G., Hernández-Zul, M. I., Quijano-Carranza, J. A., & Rico-García, E. (2012). The effect of climate change on plant diseases. African Journal of Biotechnology, 11, 2417–2428.

    Article  Google Scholar 

  • Yang, X. B., & Scherm, H. (1997). El niño and infectious disease. Science, 275, 737–741.

    Article  Google Scholar 

  • Yang, X. C., & Hwa, C. M. (2008). Genetic modification of plant architecture and variety improvement in rice. Heredity, 101, 396–404.

    Article  PubMed  CAS  Google Scholar 

  • Ye, L., Fu, X., & Ge, F. (2010). Elevated CO2 alleviates damage from Potato virus Y infection in tobacco plants. Plant Science, 179, 219–224.

    Article  CAS  Google Scholar 

  • Zhao, T. J., Sun, S., Liu, Y., Liu, J. M., Liu, Q., Yan, Y. B., et al. (2006). Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. Journal of Biological Chemistry, 281, 10752–10759.

    Article  PubMed  CAS  Google Scholar 

  • Ziska, L. H., Blumenthal, D. M., Runion, G. B., Hunt, E. R. J., & Diaz-Soltero, H. (2011). Invasive species and climate change: an agronomic prespective. Climatic Change, 105, 13–42.

    Article  Google Scholar 

  • Ziska, L. H., & Runion, G. B. (2007). Future weed, pest, and disease problems for plants. In P. C. D. Newton, G. Edwards, A. Carran, & P. Niklaus (Eds.), Agroecosystems in a changing climate (pp. 261–287). Boca Raton: CRC Press.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Bernard Tivoli and other organizers of the international conference on plant canopy architecture impact on disease epidemiology and pest development, which provided the impetus for this paper. Many colleagues have generously offered advice and ideas to contribute to opinions expressed in this review. Some of the findings come from research by graduate students including Peter Wilson, Femi Akinsanmi, Rhyannyn Westecott and Paul Melloy and technical assistance from Ross Perrott. Co-investment in research from the National Greenhouse Advisory Committee, Cooperative Research Centre for National Plant Biosecurity and CSIRO Plant Industry is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukumar Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pangga, I.B., Hanan, J. & Chakraborty, S. Climate change impacts on plant canopy architecture: implications for pest and pathogen management. Eur J Plant Pathol 135, 595–610 (2013). https://doi.org/10.1007/s10658-012-0118-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0118-y

Keywords

Navigation