Skip to main content

Elimination of Grapevine rupestris stem pitting-associated virus (GRSPaV) from two Vitis vinifera cultivars by in vitro chemotherapy


The grapevine (Vitis vinifera L.) cultivars ‘Agiorgitiko’ and ‘Malagouzia’, naturally infected with Grapevine rupestris stem pitting-associated virus (GRSPaV), were subjected to in vitro chemotherapy using the antiviral inosine 5′-monophosphate dehydrogenase inhibitors tiazofurin (TR), ribavirin (RBV) and mycophenolic acid (MPA). The chemotherapy lasted 80 days and was carried out as two consecutive treatments. Severe phytotoxicity, estimated after 40 days of culture, was observed in drug-treated explants, especially when high doses of TR were used. Phytotoxicity exhibited a cultivar- and chemical compound-dependent profile. The virus eradication status of the survived plantlets was determined by nested RT-PCR using total RNA templates, after 80 days of drug treatment and one year later, after the passage of one dormancy period, in potted plants grown in a greenhouse. Data indicated that the highest GRSPaV elimination in ‘Agiorgitiko’ was obtained with 10 μg  ml−1 TR, 30 μg  ml−1 RBV and 20 μg  ml−1 MPA. The eradication rates were lower in the case of ‘Malagouzia’, where the highest ones were achieved after treatments with 15 μg ml−1 TR and 80 μg ml−1 MPA. This is the first report on GRSPaV elimination in grapevine following treatment with antiviral compounds, which could provide an alternative to the traditional methods of virus eradication through meristem culture and thermotherapy.

This is a preview of subscription content, access via your institution.

Fig. 1





grapevine leafroll-associated virus


grapevine rupestris stem pitting-associated virus


grapevine virus A


inosin 5′-monophosphate dehydrogenase


mycophenolic acid


naphthaleneacetic acid




rupestris stem pitting




woody plant medium


  • Anonymous. (2008). Certification scheme. Pathogen-tested material of grapevine varieties and rootstocks. EPPO Bulletin, 38, 422–429.

    Article  Google Scholar 

  • Bayati, S., Shams-Bakhsh, M., & Moieni, A. (2011). Elimination of Grapevine virus A (GVA) by cryotherapy and electrotherapy. Journal of Agriculture, Science and Technology, 13, 443–450.

    Google Scholar 

  • Bouyahia, H., Boscia, D., Savino, V., La Notte, P., Pirolo, C., Castellano, M. A., Minafra, A., & Martelli, G. P. (2005). Grapevine rupestris stem pitting-associated virus linked with grapevine vein necrosis. Vitis, 44, 133–137.

    CAS  Google Scholar 

  • De Clercq, E., & Field, H. J. (2006). Antiviral prodrugs - the development of successful prodrug strategies for antiviral chemotherapy. British Journal of Pharmacology, 147, 1–11.

    PubMed  Article  Google Scholar 

  • Dovas, C. I., & Katis, N. I. (2003). A spot nested RT-PCR method for the simultaneous detection of members of the Vitivirus and Foveavirus genera in grapevine. Journal of Virological Methods, 107, 99–106.

    PubMed  Article  CAS  Google Scholar 

  • Du, Z., Chen, J., & Hiruki, C. (2006). Optimization and application of a multiplex RT-PCR system for simultaneous detection of five potato viruses using 18S rRNA as an internal control. Plant Disease, 90, 185–189.

    Article  CAS  Google Scholar 

  • Galzy, R., Haffner, V., & Compan, D. (1990). Influence of three factors on the growth and nutrition of grapevine microcuttings. Journal of Experimental Botany, 41, 295–301.

    Article  Google Scholar 

  • Gambino, G., Bondaz, J., & Gribaudo, I. (2006). Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. European Journal of Plant Pathology, 114, 397–404.

    Article  Google Scholar 

  • Gambino, G., Di Matteo, D., & Gribaudo, I. (2009). Elimination of Grapevine fanleaf virus from three Vitis vinifera cultivars by somatic embryogenesis. European Journal of Plant Pathology, 123, 57–60.

    Article  Google Scholar 

  • Gribaudo, I., Gambino, G., Cuozzo, D., & Mannini, F. (2006). Attempts to eliminate grapevine rupestris stem pitting-associated virus from grapevine clones. Journal of Plant Pathology, 88, 293–298.

    Google Scholar 

  • Hong, Z., & Cameron, C. E. (2002). Pleiotropic mechanisms of ribavirin antiviral activities. Progress in Drug Research, 59, 41–69.

    PubMed  Article  CAS  Google Scholar 

  • Huberman, E., McKeown, C. K., & Friedman, J. (1981). Mitogen-induced resistance to mycophenolic acid in hamster cells can be associated with increased inosine 5-phosphate dehydrogenase activity. Proceedings of the National Academy of Sciences of the United States of America, 79, 3151–3154.

    Article  Google Scholar 

  • Lima, M. F., Alkowni, R., Uyemoto, J. K., Golino, D., Osman, F., & Rowhani, A. (2006). Molecular analysis of a California strain of rupestris stem-pitting associated virus isolated from declining Syrah grapevines. Archives of Virology, 151, 1889–1894.

    PubMed  Article  CAS  Google Scholar 

  • Lloyd, G. B., & McCown, B. M. (1980). Commercially feasible micropropagation of montian laurel, Kalmia latifolia, by the use of shoot tip culture. Proceedings of the International Plant Propagation Society, 30, 412–427.

    Google Scholar 

  • Maliogka, V. I., Skiada, F. G., Eleftheriou, E. P., & Katis, N. I. (2009). Elimination of a new ampelovirus (GLRaV-Pr) and Grapevine rupestris stem pitting associated virus (GRSPaV) from two Vitis vinifera cultivars combining in vitro thermotherapy with shoot tip culture. Scientia Horticulturae, 123, 280–282.

    Article  Google Scholar 

  • Martelli, G. (2009). Grapevine virology highlights 2006–2009. In: le Progrès Agricole et Viticole (Ed.), Proceedings of the 16th Meeting of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine. ICVG, Dijon, France, pp. 15–23

  • Meng, B., Johnson, R., Peressini, S., Forsline, P. L., & Gonsalves, D. (1999). Rupestris stem pitting associated virus-1 is consistently detected in grapevines that are infected with Rupestris stem pitting. European Journal of Plant Pathology, 105, 191–199.

    Article  CAS  Google Scholar 

  • Meng, B., Li, C., Wang, W., Goszczynski, D., & Gonsalves, D. (2005). Complete genome sequences of two new variants of Grapevine rupestris stem pitting-associated virus and comparative analyses. Journal of General Virology, 86, 1555–1560.

    PubMed  Article  CAS  Google Scholar 

  • Meng, B., Rebelo, A. R., & Fisher, H. (2006). Genetic diversity analyses of grapevine Rubestris stem pitting-associated virus reveal distinct population structures in scion verus rootstock varieties. Journal of General Virology, 87, 1725–1733.

    PubMed  Article  CAS  Google Scholar 

  • Nakaune, R., Inoue, K., Nasu, H., Kakogawa, K., Nitta, H., Imada, J., & Nakano, M. (2008). Detection of viruses associated with rugose wood in Japanese grapevines and analysis of genomic variability of Rupestris stem pitting-associated virus. Journal of General Plant Pathology, 74, 156–163.

    Article  CAS  Google Scholar 

  • Nolasco, G., Santos, C., Petrovic, N., Santos, M. T., Cortez, I., Fonseca, F., Boben, J., Nazaré Pereira, A. M., & Sequeira, O. (2006). Rupestris stem pitting-associated virus isolates are composed by mixtures of genomic variants which share a highly conserved coat protein. Archives of Virology, 151, 83–96.

    PubMed  Article  CAS  Google Scholar 

  • Panattoni, A., D’Anna, F., & Triolo, E. (2007). Antiviral activity of tiazofurin and mycophenolic acid against Grapevine leafroll-associated virus 3 in Vitis vinifera explants. Antiviral Research, 73, 206–211.

    PubMed  Article  CAS  Google Scholar 

  • Panattoni, A., D’Anna, F., Cristani, C., & Triolo, E. (2007). Grapevine vitivirus A eradication in Vitis vinifera explants by antiviral drugs and thermotherapy. Journal of Virological Methods, 146, 129–135.

    PubMed  Article  CAS  Google Scholar 

  • Panattoni, A., Luvisi, A., & Triolo, E. (2011). Selective chemotherapy on Grapevine leafroll-associated virus-1 and -3. Phytoparasitica, 39, 503–508.

    Article  CAS  Google Scholar 

  • Péros, J. P., Torregrosa, L., & Berger, G. (1998). Variability among Vitis vinifera cultivars in micropropagation, organogenesis and antibiotic sensitivity. Journal of Experimental Botany, 49, 171–179.

    Google Scholar 

  • Quecini, V., Lopes, M. L., Pacheco, F. T. H., & Ongarelli, M. D. G. (2008). Ribavirin, a guanosine analogue mammalian antiviral agent, impairs tomato spotted wilt virus multiplication in tobacco cell cultures. Archives of Phytopathology and Plant Protection, 41, 1–13.

    Article  CAS  Google Scholar 

  • Rott, M. E., & Jelkmann, W. (2001). Characterization and detection of several filamentous viruses of cherry: adaptation of an alternative cloning method (DOP-PCR) and modification of an RNA extraction protocol. European Journal of Plant Pathology, 107, 411–420.

    Article  CAS  Google Scholar 

  • Shu, Q., & Nair, V. (2008). Inosine monophosphate dehydrogenase (IMPDH) as a target in drug discovery. Medical Research and Review, 28, 219–232.

    Article  CAS  Google Scholar 

  • Sidwell, R. W., Huffman, J. H., Khare, G. P., Allen, L. B., Witkowski, J. T., & Robins, R. K. (1972). Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science, 177, 705–706.

    PubMed  Article  CAS  Google Scholar 

  • Skiada, F. G., Grigoriadou, K., Maliogka, V. I., Katis, N. I., & Eleftheriou, E. P. (2009). Elimination of Grapevine leafroll-associated virus 1 and Grapevine rupestris stem pitting-associated virus from grapevine cv. ‘Agiorgitiko’, and a micropropagation protocol for mass production of virus-free plantlets. Journal of Plant Pathology, 91, 175–182.

    Google Scholar 

  • Skiada, F. G., Grigoriadou, K., & Eleftheriou, E. P. (2010). Micropropagation of Vitis vinifera L. cv. ‘Malagouzia’ and ‘Xinomavro’. Central European Journal of Biology, 5, 839–852.

    Article  Google Scholar 

  • Srivastava, P. C., Pickering, M. V., Allen, L. B., Steeter, D. G., Campbell, M. T., Witkowski, J. T., Sidewell, R. W., & Robins, R. K. (1977). Synthesis and antiviral activity of certain thiazole c-nucleosides. Journal of Medicinal Chemistry, 20, 256–262.

    PubMed  Article  CAS  Google Scholar 

  • Stewart, S., & Nassuth, A. (2001). RT-PCR based detection of Rupestris stem pitting-associated virus within field-grown grapevines throughout the year. Plant Disease, 85, 617–620.

    Article  Google Scholar 

  • Torregrosa, L., & Bouquet, A. (1996). Adventitious bud formation and shoot development from in vitro leaves of Vitis x Muscadinia hybrids. Plant Cell, Tissue and Organ Culture, 45, 245–252.

    Article  CAS  Google Scholar 

  • Wang, Q., Mawassi, M., Li, P., Gafny, R., Sela, I., & Tanne, E. (2003). Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Science, 165, 321–327.

    Article  CAS  Google Scholar 

  • Zhang, Y. P., Uyemoto, J. K., Golino, D. A., & Rowhani, A. (1998). Nucleotide sequence and RT-PCR detection of a virus associated with grapevine rupestris stem-pitting disease. Phytopathology, 88, 1231–1237.

    PubMed  Article  CAS  Google Scholar 

Download references


This study is part of a PhD thesis (F. G. Skiada) and was financed by a research project for the reinforcement of new scientists [PENED 2003, funded by 75 % of the public cost from the European Union, and 25 % from the Greek Government (Ministry of Development - General Secretariat of Research and Technology, GSRT), (Measure 8.3, E.P.A.N. - Third European Community Framework)], while the infrastructure and basic chemicals were provided by Vitro Hellas S.A. We also thank Prof. H.N. Jayaram for kindly providing the tiazofurin, and the PhD student A. Katsiani for her help in some experiments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. P. Eleftheriou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skiada, F.G., Maliogka, V.I., Katis, N.I. et al. Elimination of Grapevine rupestris stem pitting-associated virus (GRSPaV) from two Vitis vinifera cultivars by in vitro chemotherapy. Eur J Plant Pathol 135, 407–414 (2013).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Mycophenolic acid
  • Nested RT-PCR
  • Phytotoxicity
  • Ribavirin
  • Tiazofurin