European Journal of Plant Pathology

, Volume 134, Issue 3, pp 647–660 | Cite as

Characterisation of a 16SrII phytoplasma strain associated with bushy stunt of hawkweed oxtongue (Picris hieracioides) in south-eastern Serbia and the role of the leafhopper Neoaliturus fenestratus (Deltocephalinae) as a natural vector

  • Milana MitrovićEmail author
  • Jelena Jović
  • Tatjana Cvrković
  • Oliver Krstić
  • Nenad Trkulja
  • Ivo Toševski


A 2-year study of host association, molecular characterisation and vector transmission of a phytoplasma related to the 16SrII group in a vineyard of south-eastern Serbia was conducted. Grapevine, eight common weeds and 31 Auchenorrhyncha species were collected and analysed for phytoplasma presence. PCR-RFLP analyses of the 16S rRNA gene identified the presence of a new strain of phytoplasma related to the 16SrII group in P. hieracioides with symptoms of stunting or bushy stunting. Grapevine samples, all without symptoms, were negative for phytoplasma presence. Plants of Erigeron annuus, Cynodon dactylon, Daucus carota and P. hieracioides, either exhibiting symptoms of yellowing or without symptoms, were positive for the presence of stolbur phytoplasma. Among the tested cicada species, seven were infected with phytoplasmas from the aster yellows group, two with stolbur phytoplasma, two with 16SrII phytoplasma, and one with the 16SrV-C phytoplasma subgroup. The phytoplasma strain of the 16SrII group was recorded in approximately 50 % of the collected leafhopper species Neoaliturus fenestratus and in a few specimens of the planthopper Dictyophara europaea. The vector status of N. fenestratus was tested using the second generation of the planthopper in two separate transmission trials with P. hieracioides and periwinkle seedlings. In both tests, the leafhopper successfully transmitted 16SrII phytoplasma to exposed plants, proving its role as a natural vector of this phytoplasma in Europe. A finer molecular characterisation and phylogenetic relatedness of the 16SrII phytoplasma strain by sequence analyses of the 16S rRNA and ribosomal protein genes rpl22-rps3 indicated that it was most closely related to the 16SrII-E subgroup.


Insect-vector Phytoplasma transmission Picris hieracioides bushy stunt—PHBS PCR-RFLP rpl22-rps16S rRNA 



We are grateful to A. Bertaccini, E. Angelini and E. Boudon-Padieu for providing phytoplasma reference strains. This research was funded by grant III43001 from the Ministry of Education and Science of the Republic of Serbia.


  1. Alhudaib, K., Arocha, Y., Wilson, M., & Jones, P. (2009). Molecular identification, potential vectors and alternative hosts of the phytoplasma associated with a lime decline disease in Saudi Arabia. Crop Protection, 28, 13–18.CrossRefGoogle Scholar
  2. Angelini, E., Clair, D., Borgo, M., Bertaccini, A., & Boudon-Padieu, E. (2001). Flavescence dorée in France and Italy Occurrence of closely related phytoplasma isolates and their near relationships to Palatinate grapevine yellows and an alder phytoplasma. Vitis, 40, 79–86.Google Scholar
  3. Arocha, Y., Singh, A., Pandey, M., Tripathi, A. N., Chandra, B., Shukla, S. K., et al. (2008). New plant hosts for group 16SrII, ‘Candidatus Phytoplasma aurantifolia’, in India. New Disease Reports, 17, 36.Google Scholar
  4. Aryamanesh, N., Al-Subhi, A. M., Snowball, R., Yan, G., & Siddique, K. H. M. (2011). First report of Bituminaria Witches’-broom in Australia caused by a 16SrII phytoplasma. Plant Disease, 95(2), 226–226.CrossRefGoogle Scholar
  5. Batlle, A., Angeles Martínez, M., & Laviña, A. (2000). Occurrence, distribution and epidemiology of Grapevine Yellows in Spain. European Journal of Plant Pathology, 106, 811–816.CrossRefGoogle Scholar
  6. Biedermann, R., & Niedringhaus, R. (2004). Die Zikaden Deutschlands –Bestimmungstafeln für alle Arten. Scheessel, WABV.Google Scholar
  7. Bosco, D., Alma, A., & Arzone, A. (1997). Studies on population dynamics and spatial distribution of leafhoppers in vineyards (Homoptera: Cicadellidae). Annals of Applied Biology, 130, 1–11.CrossRefGoogle Scholar
  8. Constable, F. E. (2010). Phytoplasma epidemiology: Grapevines as a model. In G. P. Weintraub & P. Jones (Eds.), Phytoplasmas: Genomes, plant hosts, and vectors (pp. 188–212). UK: CABI.Google Scholar
  9. Cvrković, T. (2010). Diversity of Auchenorrhyncha species in Serbian vineyards and their role in Bois noir transmission. PhD thesis, 1–103 pp. University of Belgrade.Google Scholar
  10. Deng, S., & Hiruki, C. (1991). Amplification of 16S rRNA genes from culturable and non-culturable molicutes. Journal of Microbiological Methods, 14, 53–61.CrossRefGoogle Scholar
  11. Elliot, S. L., Adler, F. R., & Sabelis, M. W. (2003). How virulent should a parasite be to its vector? Ecology, 84, 2568–2574.CrossRefGoogle Scholar
  12. Esmailzadeh-Hosseini, S. A., Mirzaie, A., Jafari-Nodooshan, A., & Rahimian, H. (2007). The first report of transmission of a phytoplasma associated with sesame phyllody by Orosius albicinctus in Iran. Australasian Plant Disease Notes, 2, 33–34.CrossRefGoogle Scholar
  13. Filippin, L., Jović, J., Cvrković, T., Forte, V., Clair, D., Toševski, I., et al. (2009). Molecular characteristics of phytoplasmas associated with ‘Flavescence dorée’ in clematis and grapevine and preliminary results on the role of Dictyophara europaea as a vector. Plant Pathology, 58, 826–837.CrossRefGoogle Scholar
  14. Firrao, G., Gibb, K., & Streten, C. (2005). Short taxonomic guide to the ‘Candidatus Phytoplasma’. Journal of Plant Pathology, 87, 249–263.Google Scholar
  15. Gatineau, F., Larrue, J., Clair, D., Lorton, F., Richard-Molard, M., & Boudon-Padieu, E. (2001). A new natural planthopper vector of stolbur phytoplasma in the genus Pentastiridius (Hemiptera: Cixiidae). European Journal of Plant Pathology, 107, 263–271.CrossRefGoogle Scholar
  16. Gibb, K. S., Constable, F. E., Moran, J. R., & Padovan, A. C. (1999). Phytoplasmas in Australian grapevines—detection, differentiation and associated diseases. Vitis, 38, 107–114.Google Scholar
  17. Holzinger, W. E., Kammerlander, I., & Nickel, H. (2003). The Auchenorrhyncha of Central Europe, Fulgoromorpha, Cicadomorpha Excl. Cicadellidae (p. 673). Leiden: Brill Academic Publishers.Google Scholar
  18. IRPCM. (2004). “Candidatus phytoplasma”, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54, 1243–1255.CrossRefGoogle Scholar
  19. Klein, M., & Raccah, B. (1980). The effect of temperature and hosts on the population dynamics of Neoaliturus fenestratus (Herrich-Schaffer) (Hemiptera: Euscelidae). Bulletin of Entomological Research, 70, 471–473.CrossRefGoogle Scholar
  20. Laboucheix, J., Van Offeren, A., & Desmdts, M. (1972). The role of Orosius cellulosus (Lindberg) (Homoptera: Cicadelloidea) as a vector of the floral virescence of cotton in Upper Volta. Cotton Fibres Tropical, 27, 393–394.Google Scholar
  21. Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology, 48, 1153–1169.Google Scholar
  22. Lee, I. M., Martini, M., Marcone, C., & Zhu, S. F. (2004). Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. International Journal of Systematic and Evolutionary Microbiology, 54, 337–347.PubMedCrossRefGoogle Scholar
  23. Leyva-López, N. E., Ochoa-Sánchez, J. C., Leal-Klevezas, D. S., & Martínez-Soriano, J. P. (2002). Multiple phytoplasmas associated with potato diseases in Mexico. Canadian Journal of Microbiology, 48, 1062–1068.PubMedCrossRefGoogle Scholar
  24. Maixner, M. (1994). Transmission of German grapevine yellows (Vergilbungskrankheit) by planthopper Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). Vitis, 33, 103–104.Google Scholar
  25. Marcone, C., Raggozzino, A., & Seemüller, E. (1997). Detection and identification of phytoplasma infecting vegetable, ornamental and forage crops in southern Italy. Journal of Plant Pathology, 79, 211–217.Google Scholar
  26. Martini, M., Lee, I. M., Bottner, K. D., Zhao, Y., Botti, S., Bertaccini, A., et al. (2007). Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology, 57, 2037–2051.PubMedCrossRefGoogle Scholar
  27. Marzachì, C., Coulibaly, A., Coulibaly, N., Sangaré, A., Diarra, M., De Gregorio, T., et al. (2009). Cotton virescence phytoplasma and its weed reservoir in Mali. Journal of Plant Pathology, 91, 717–721.Google Scholar
  28. Mirzaie, A., Esmailzadeh-Hosseini, S. A., Safari-Nodooshan, A., & Rahimian, H. (2007). Molecular characterisation and potential insect vectors of a phytoplasma associated with garden beet witches’ broom in Yazd, Iran. Journal of Phytopathology, 155, 198–203.CrossRefGoogle Scholar
  29. Mitrović, M., Toševski, I., Krstić, O., Cvrković, T., Krnjajić, S., & Jović, J. (2011). A strain of phytoplasma related to 16SrII group in Picris hieracioides L. in Serbia. Bulletin of Insectology, 64, S241–S242.Google Scholar
  30. Nickel, H. (2003). The leafhoppers and planthoppers of Germany (Hemiptera, Auchenorrhyncha): Patterns and strategies in a highly diverse group of phytophagous insects. Pensoft Publ. 2003.Google Scholar
  31. Omar, A. F., & Foissac, X. (2012). Occurrence and incidence of phytopalsmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. European Journal of Plant Pathology. doi: 10.1007/sl10658-011-9908-x.
  32. Orenstein, S., Zahavi, T., Nestel, D., Sharon, R., Barkalifa, M., & Weintraub, P. G. (2003). Spatial dispersion patterns of potential leafhopper and planthopper (Homoptera) vectors of phytoplasma in wine vineyards. Annals of Applied Biology, 142, 341–348.CrossRefGoogle Scholar
  33. Raccah, B., & Klein, M. (1982). Transmission of the safflower phyllody mollicute by Neolaiturus fenestratus. Phytopathology, 72, 230–232.CrossRefGoogle Scholar
  34. Riedle-Bauer, M., Tiefenbrunner, W., Otreba, J., Hanak, K., Schildberger, B., & Regner, F. (2006). Epidemiological observations on Bois Noir in Austrian vineyards. Mitteilungen Klosterneuburg, 56, 177–181.Google Scholar
  35. Salehi, M., Izadpanah, K., Siampour, M., Bagheri, A., & Faghihi, S. M. (2007). Transmission of ‘Candidatus Phytoplasma aurantifolia’ to Bakraee (Citrus reticulata Hybrid) by Feral Hishimonus phycitis Leafhoppers in Iran. Plant Disease, 91, 466.CrossRefGoogle Scholar
  36. Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens, U., et al. (1996). Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Applied and Environmental Microbiology, 62, 1988–1993.Google Scholar
  37. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCrossRefGoogle Scholar
  38. Tolu, G., Botti, S., Garau, R., Prota, V. A., Sechi, A., Prota, U., et al. (2006). Identification of a 16SrII-E Phytoplasma in Calendula arvensis, Solanum nigrum and Chenopodium spp. Plant Disease, 90, 325–330.CrossRefGoogle Scholar
  39. Tran-Nguyen, L. T. T., Persley, D. M., & Gibb, K. S. (2003). First report of phytoplasma disease in capsicum, celery and chicory in Queensland, Australia. Australasian Plant Pathology, 32, 5599–5600.CrossRefGoogle Scholar
  40. Wang, Z. H., Chen, Q. B., Ye, A. Q., & Zhang, H. (2008). First report of a phytoplasma associated with Praxelis witches’ broom in China. Plant Pathology, 57, 364.Google Scholar
  41. Wang, Z. H., Chen, Q. B., Yang, L. F., Li, H. C., & Bai, C. J. (2008). Occurrence of a 16SrII group phytoplasma associated with crotalaria witches’ broom in Hainan, China. Plant Pathology, 57, 364.Google Scholar
  42. Wei, W., Davis, R. E., Lee, I. M., & Zhao, Y. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57, 1855–1867.PubMedCrossRefGoogle Scholar
  43. White, D. T., Blackall, L. L., Scott, P. T., & Walsh, K. B. (1998). Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ‘Candidatus Phytoplasma australiense’ and a new taxon, ‘Candidatus Phytoplasma australasia’. International Journal of Systematic Bacteriology, 48, 941–951.PubMedCrossRefGoogle Scholar
  44. Zreik, L., Carle, P., Bové, J. M., & Garnier, M. (1995). Characterisation of the mycoplasmalike organism associated with witches’-broom disease of lime and proposition of a ‘Candidatus’ taxon for the organism, ‘Candidatus Phytoplasma aurantifolia’. International Journal of Systematic Bacteriology, 45, 449–453.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Milana Mitrović
    • 1
    Email author
  • Jelena Jović
    • 1
  • Tatjana Cvrković
    • 1
  • Oliver Krstić
    • 1
  • Nenad Trkulja
    • 2
  • Ivo Toševski
    • 1
    • 3
  1. 1.Department of Plant PestsInstitute for Plant Protection and EnvironmentZemunSerbia
  2. 2.Department of Plant PathologyInstitute for Plant Protection and EnvironmentBelgradeSerbia
  3. 3.CABI Europe - SwitzerlandDelémontSwitzerland

Personalised recommendations