European Journal of Plant Pathology

, Volume 133, Issue 4, pp 865–875 | Cite as

Assessment of the loose smut fungi (Ustilago nuda and U. tritici) in tissues of barley and wheat by fluorescence microscopy and real-time PCR

  • Jan Wunderle
  • Andreas Leclerque
  • Ulrich Schaffrath
  • Alan Slusarenko
  • Eckhard Koch


Loose smut fungi of barley and wheat (Ustilago nuda and U. tritici, respectively) colonize the plant without causing obvious disease symptoms before heading. The availability of diagnostic methods to detect and follow the growth of these pathogens in the plant would therefore be highly advantageous for both resistance breeding and the development of effective seed treatments. Using seed lots of barley and wheat highly infected with loose smut, we studied the early establishment of the loose smut pathogens in the plant by fluorescence microscopy. In hand-cut sections stained with the fluorochrome Blankophor®, fungal hyphae were observed to invade the shoot apical meristem and leaf primordia during the first days after the onset of germination. At the first node stage the ear and leaf primordia were generally extensively colonized. Hyphae of U. nuda were also regularly observed in high density in the nodes. A protocol was developed for the specific amplification of U. nuda and U. tritici DNA extracted from infected plant tissue. PCR screening of U nuda in seedlings from infected and healthy seed lots was compared to ELISA, microscopy and ultimately head infection of mature plants derived from tillers of the tested seedlings. The results indicated that a prediction of loose smut infection by real-time PCR is possible at the second leaf stage, and that the assay is equally suited for use with spring and winter varieties of barley and wheat.


Diagnosis Monitoring Quantification Seed-borne fungi 



This work was financed by the German “Federal Scheme for Organic Farming and other Forms of Sustainable Agriculture” (Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft, BÖLN). The authors are grateful to Cornelia I. Ullrich (Julius Kühn-Institut, Darmstadt) and Rhoda Delventhal, Marco Löhrer and Martin Gruhlke (RWTH Aachen) for support and stimulating discussions.


  1. Agrios, G. N. (2005). Plant Pathology. London: Academic.Google Scholar
  2. Amos, W. (1952). Über die Entwicklung des Flugbrandmyzels in infizierten Weizenpflanzen. Dissertation, Technische Universität Carolo-Wilhelmina, Braunschweig.Google Scholar
  3. Bates, J. A., Morreale, G., Kenyon, D. M., Taylor, E. J. A., & Thomas, J. E. (2001). Investigation of the potential of a PCR test to detect Ustilago nuda in barley seeds. Pages 221–224. In: A. J. Biddle (Ed.), Seed treatment: challenges & opportunities. Proceedings of an International Symposium, Wishaw, North Warwickshire, UK, 26–27 February 2001.Google Scholar
  4. Batts, C. C. V. (1955). Observations on the infection of wheat by loose smut (Ustilago tritici (Pers.) Rostr.). Transactions of the British Mycological Society, 38, 465–475.CrossRefGoogle Scholar
  5. Batts, C. C. V., & Jeater, A. (1958). The development of loose smut (Ustilago tritici) in susceptible varieties of wheat, and some observations on field infection. Transactions of the British Mycological Society, 41, 115–125.CrossRefGoogle Scholar
  6. Boedo, C., Berruyer, R., Lecomte, M., Bersihand, S., Briard, M., Le Clerc, V., Simoneau, P., & Poupard, P. (2010). Evaluation of different methods for the characterization of carrot resistance to the Alternaria leaf blight pathogen (Alternaria dauci) revealed two qualitatively different resistances. Plant Pathology, 59, 368–375.CrossRefGoogle Scholar
  7. Bugbee, B., Koerner, G., Albrechtsen, R., Dewey, W., & Clawson, S. (1997). Registration of ‘USU-Apogee’ wheat. Crop Science, 37, 620.CrossRefGoogle Scholar
  8. Eibel, P., Wolf, G. A., & Koch, E. (2005a). Detection of Tilletia caries, causal agent of common bunt of wheat, by ELISA and PCR. Journal of Phytopathology, 153, 297–306.CrossRefGoogle Scholar
  9. Eibel, P., Wolf, G. A., & Koch, E. (2005b). Development and evaluation of an enzyme-linked immunosorbent assay (ELISA) for the detection of loose smut of barley (Ustilago nuda). European Journal of Plant Pathology, 111, 113–124.CrossRefGoogle Scholar
  10. Hamer, E. C., Moore, C. B., & Denning, D. W. (2006). Comparison of two fluorescent whiteners, Calcofluor and Blankophor, for the detection of fungal elements in clinical specimens in the diagnostic laboratory. Clinical Microbiology and Infection, 12, 181–184.PubMedCrossRefGoogle Scholar
  11. Jimenez-Fernandez, D., Montes-Borrego, M., Jimenez-Diaz, R. M., Navas-Cortes, J. A., & Landa, B. B. (2011). In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay. Phytopathology, 101, 250–262.PubMedCrossRefGoogle Scholar
  12. Josefsen, L., & Christiansen, S. K. (2002). PCR as a tool for early detection and diagnosis of common bunt of wheat, caused by Tilletia tritici. Mycological Research, 106, 1287–1292.CrossRefGoogle Scholar
  13. Kellerer, T., Sedlmeier, M., Rabenstein, F., & Killermann, B. (2006). Development of immunochemical and PCR methods for qualitative detection of Tilletia species in organic seeds. Dumalasova, V. (ed.). Special issue. Czech Journal of Genetics and Plant Breeding, 42, 72–74.Google Scholar
  14. Kochanová, M., Zouhar, M., Prokinová, E., & Rysánek, P. (2004). Detection of Tilletia controversa and Tilletia caries in wheat by PCR method. Plant Soil and Environment, 50, 75–77.Google Scholar
  15. Kollmorgen, J. F., & Ballinger, J. (1987). Detection and morphology of hyphae of common bunt fungi (Tilletia laevis and T. tritici) in wheat seedlings. Transactions of the British Mycological Society, 88, 555–559.CrossRefGoogle Scholar
  16. Malik, M. M. S., & Batts, C. C. V. (1960a). The infection of barley by loose smut (Ustilago nuda [Jens.] Rostr.). Transactions of the British Mycological Society, 43, 117–125.CrossRefGoogle Scholar
  17. Malik, M. M. S., & Batts, C. C. V. (1960b). The development of loose smut of barley (Ustilago nuda) in the barley plant, with observations on spore formation in nature and in culture. Transaction of the British Mycological Society, 43, 126–131.CrossRefGoogle Scholar
  18. Mantle, P. G. (1961). Further observations on an abnormal reaction of wheat to loose smut. Transaction of the British Mycological Society, 44, 529–545.CrossRefGoogle Scholar
  19. Matyac, C. A. (1985). Histological development of Sphacelotheca reiliana on Zea mays. Phytopathology, 75, 924–929.CrossRefGoogle Scholar
  20. McGrann, G. R. D., Townsend, B. J., Antoniw, J. F., Asher, M. J. C., & Mutasa-Göttgens, E. F. (2008). Barley elicits a similar early basal defence response during host and non-host interactions with Polymyxa root parasites. European Journal of Plant Pathology, 123, 5–15.CrossRefGoogle Scholar
  21. Moricca, S., Ragazzi, A., Kasuga, T., & Mitchelson, K. R. (1998). Detection of Fusarium oxysporum f. sp. vasinfectum in cotton tissue by polymerase chain reaction. Plant Pathology, 47, 486–494.CrossRefGoogle Scholar
  22. Morton, D. J. (1961). A quick method of preparing barley embryos for loose smut examination. Phytopathology, 50, 270–272.Google Scholar
  23. Neergard, P. (1988). Ustilago nuda (Jensen) Rostrup. In I. M. Smith, J. Dunez, R. A. Lelliot, D. H. Phillips, & S. A. Archer (Eds.), European Handbook of Plant Diseases (pp. 470–471). Oxford: Blackwell Scientific Publications.Google Scholar
  24. Philipson, M. N., & Christey, M. C. (1986). The relationship of host and endophyte during flowering, seed formation, and germination of Lolium perenne. New Zealand Journal of Botany, 24, 125–134.CrossRefGoogle Scholar
  25. Poehlmann, J. M. (1945). A simple method of inoculating barley with loose smut. Phytopathology, 35, 640–644.Google Scholar
  26. Popp, W. (1951). Infection in seeds and seedlings of wheat and barley in relation to development of loose smut. Phytopathology, 41, 261–275.Google Scholar
  27. Roberts, A. M. I., Theobald, C. M., & McNeil, M. (2007). Calibration of quantitative PCR asssays. Journal of Agricultural, Biological, and Environmental Statistics, 12, 364–378.CrossRefGoogle Scholar
  28. Rohringer, R., Kim, W. K., Samborski, D. J., & Howes, K. (1977). Calcofluor: an optical brightener for fluorescence microscopy of fungal plant parasites in leaves. Phytopathology, 67, 808–810.CrossRefGoogle Scholar
  29. Schenck, S. (1998). Evaluation of a PCR amplification method for detection of systemic smut infections in sugarcane. Sugar Cane, 6, 2–5.Google Scholar
  30. Schilling, A. G., Möller, E. M., & Geiger, H. H. (1996). Polymerase Chain Reaction-based assays for species specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology, 86, 515–522.CrossRefGoogle Scholar
  31. Shen, N., Yan-nong, X., Feng-ge, W., Jiu-ran, Z., Shao-peng, Z., & Yong-lian, Z. (2006). The research of Sporisorium reiliana’s infection efficiency and spreading in maize based on PCR assays. Scientia Agricultura Sinica, 39, 1804–1809.Google Scholar
  32. Singh, N., Somai, B. M., & Pillay, D. (2004). Smut disease assessment by PCR and microscopy in inoculated tissue cultured sugarcane cultivars. Plant Science, 167, 987–994.CrossRefGoogle Scholar
  33. Sorauer. (1962). Handbuch der Pflanzenkrankheiten. Berlin und Hamburg: Paul Parey Verlag.Google Scholar
  34. Tottman, D. R., & Broad, H. (1987). The decimal code for the growth stages of cereals, with illustrations. Annals of Applied Biology, 110, 441–454.CrossRefGoogle Scholar
  35. Wächter, R., Wolf, G. A., & Koch, E. (2008). Evaluation of visual assessment of leaf symptoms and of an enzyme-linked immunosorbent assay as tools for the characterisation of resistance of winter wheat against common bunt (Tilletia tritici [D.C.] Tul. & C. Tul.). Journal of Plant Diseases and Protection, 115, 252–258.Google Scholar
  36. Willits, D. A., & Sherwood, J. E. (1999). Polymerase chain reaction detection of Ustilago hordei in leaves of susceptible and resistant barley varieties. Phytopathology, 89, 212–217.PubMedCrossRefGoogle Scholar
  37. Wöstmann, E. (1942). Der fluoreszenzmikroskopische Nachweis von Ustilago tritici im Weizenkorn. Kühn Archiv, 56, 247.Google Scholar
  38. Yuan, Q., Nian, S., Yin, Y., Li, M., Cai, J., & Wang, Z. (2009). Development of a PCR-based diagnostic tool specific to wheat dwarf bunt, caused by Tilletia controversa. European Journal of Plant Pathology, 124, 585–594.CrossRefGoogle Scholar
  39. Zellerhof, N., Jarosch, B., Groenewald, J., Crous, P., & Schaffrath, U. (2006). Nonhost resistance of barley is successfully manifested against Magnaporthe grisea and a closely related Pennisetum-infecting lineage but is overcome by Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 19, 1014–1022.CrossRefGoogle Scholar
  40. Zouhar, M., Mazáková, J., Prokinová, E., Vánová, M., & Rysánek, P. (2010). Quantification of Tilletia caries and Tilletia controversa mycelium in wheat apical meristem by real-time PCR. Plant Protection Science, 46, 107–115.Google Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Jan Wunderle
    • 1
  • Andreas Leclerque
    • 1
  • Ulrich Schaffrath
    • 2
  • Alan Slusarenko
    • 2
  • Eckhard Koch
    • 1
  1. 1.JKI, Institute for Biological ControlDarmstadtGermany
  2. 2.Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany

Personalised recommendations