Skip to main content
Log in

Fusarium langsethiae (Torp and Nirenberg), investigation of alternative infection routes in oats

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium langsethiae is a recently characterized fungus within the genus Fusarium. It is found as a grain contaminant of small grain cereals such as oats and barley, and to a lesser extent wheat. Fusarium langsethiae is particularly widespread in the Nordic countries and the UK where it poses a serious problem as the main producer of T-2 and HT-2 mycotoxins. The biology of F. langsethiae and its interaction with the plant remains poorly understood, partly hampered by difficulties reproducing a natural level of infection under controlled conditions. The reported study was designed as a series of glasshouse experiments to advance our understanding of F. langsethiae biology by investigating alternative infection routes and its proliferation in oats, Avena sativa. Various methods of seed, soil, and seedling inoculation, boot injection and spray inoculation, were tested. The results clearly show a strong preference of F. langsethiae for the panicle, ruling out alternative infection routes. At relatively low temperatures spray infection, accompanied by prolonged humidity, ensured a thorough establishment of the fungus both at flowering and at early dough stage. Boot injection proved to be a reliable working tool for production of an even and predictable grain infection. Apart from in the panicle, considerable fungal proliferation was only detected in flag leaf nodes, and was a direct consequence of the boot injection method. Fungal presence in the node tissue also correlated with significant stunting of infected shoots. In light of the results the pathogenic and endophytic abilities of F. langsethiae are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abildgren, M. P., Lund, F., Thrane, U., & Elmholt, S. (1987). Czapek-Dox agar containing iprodione and dichloran as a selective medium for the isolation of Fusarium species. Letters in Applied Microbiology, 5, 83–86.

    Article  Google Scholar 

  • Clement, J. A., & Parry, D. W. (1998). Stem-base disease and fungal colonisation of winter wheat grown in compost inoculated with Fusarium culmorum, F. graminearum and Microdochium nivale. European Journal of Plant Pathology, 104, 323–330.

    Article  Google Scholar 

  • Doohan, F. M., Brennan, J., & Cooke, B. M. (2003). Influence of climatic factors on Fusarium species pathogenic to cereals. European Journal of Plant Pathology, 109, 755–768.

    Article  Google Scholar 

  • Edwards, S. G. (2007). Investigation of Fusarium mycotoxins in UK barley and oat production. Final report Food Standards Agency, UK. Project code C04033. http://www.foodbase.org.uk/results.php?f_report_id=48.

  • Freeman, S., & Rodriguez, R. J. (1993). Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science, 260, 75–78.

    Article  PubMed  CAS  Google Scholar 

  • Giorni, P., Magan, N., & Battilani, P. (2009). Environmental factors modify carbon nutritional patterns and niche overlap between Aspergillus flavus and Fusarium verticillioides strains from maize. International Journal of Food Microbiology, 130, 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Halstensen, A. S., Nordby, K. C., Eduard, W., & Klemsdal, S. S. (2006). Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. Journal of Environmental Monitoring, 8, 1235–1241.

    Article  PubMed  CAS  Google Scholar 

  • Hofgaard, I. S., Brodal, G., Elen, O., Aamot, H. U., & Klemsdal, S. S. (2009). Innhold av mykotoksiner i havre og vårhvete 2006–2008. Content of mycotoxins in oats and spring wheat 2006–2008. Bioforsk Conference 2009. Bioforsk FOKUS, 4, 92–93.

    Google Scholar 

  • Ilgen, P., Hadeler, B., Maier, F. J., & Schafer, W. (2009). Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Molecular Plant-Microbe Interactions, 22, 899–908.

    Article  PubMed  CAS  Google Scholar 

  • Imathiu, S. M. (2008) Fusarium langsethiae infection and mycotoxin production in oats. Harper Adams University College, UK. PhD Thesis.

  • Imathiu, S. M., Ray, R. V., Back, M., Hare, M. C., & Edwards, S. G. (2009). Fusarium langsethiae pathogenicity and aggressiveness towards oats and wheat in wounded and unwounded in vitro detached leaf assays. European Journal of Plant Pathology, 124, 117–126.

    Article  Google Scholar 

  • Imathiu, S. M., Hare, M. C., Ray, R. V., Back, M., & Edwards, S. G. (2010). Evaluation of pathogenicity and aggressiveness of F. langsethiae on oat and wheat seedlings relative to known seedling blight pathogens. European Journal of Plant Pathology, 126, 203–216.

    Article  Google Scholar 

  • Lacey, J., Bateman, G. L., & Mirocha, C. J. (1999). Effects of infection time and moisture on development of ear blight and deoxynivalenol production by Fusarium spp. in wheat. Annals of Applied Biology, 134, 277–283.

    Article  CAS  Google Scholar 

  • Langseth, W., & Rundberget, T. (1999). The occurrence of HT-2 toxin and other trichothecenes in Norwegian cereals. Mycopathologia, 147, 157–165.

    Article  PubMed  CAS  Google Scholar 

  • Lemmens, M., Buerstmayr, H., Krska, R., Schuhmacher, R., Grausgruber, H., & Ruckenbauer, P. (2004). The effect of inoculation treatment and long-term application of moisture on Fusarium head blight symptoms and deoxynivalenol contamination in wheat grains. European Journal of Plant Pathology, 110, 299–308.

    Article  CAS  Google Scholar 

  • Masuda, D., Ishida, M., Yamaguchi, K., Yamaguchi, I., Kimura, M., & Nishiuchi, T. (2007). Phytotoxic effects of trichothecenes on the growth and morphology of Arabidopsis thaliana. Journal of Experimental Botany, 58, 1617–1626.

    Article  PubMed  CAS  Google Scholar 

  • Mudge, A. M., Dill-Macky, R., Dong, Y. H., Gardiner, D. M., White, R. G., & Manners, J. M. (2006). A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum. Physiological and Molecular Plant Pathology, 69, 73–85.

    Article  CAS  Google Scholar 

  • Nishiuchi, T., Masuda, D., Nakashita, H., Ichimura, K., Shinozaki, K., & Yoshida, S. (2006). Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species. Molecular Plant-Microbe Interactions, 19, 512–520.

    Article  PubMed  CAS  Google Scholar 

  • Parry, D. W., Jenkinson, P., & Mcleod, L. (1995). Fusarium ear blight (scab) in small-grain cereals—a review. Plant Pathology, 44, 207–238.

    Article  Google Scholar 

  • Reischer, G. H., Lemmens, M., Farnleitner, A., Adler, A., & Mach, R. L. (2004). Quantification of Fusarium graminearum in infected wheat by species specific real-time PCR applying a TaqMan Probe. Journal of Microbiological Methods, 59, 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Riccioni, L., Inman, A., Magnus, H. A., Valvassori, M., Porta-Puglia, A., Conca, G., et al. (2008). Susceptibility of European bread and durum wheat cultivars to Tilletia indica. Plant Pathology, 57, 612–622.

    Article  Google Scholar 

  • Rocha, O., Ansari, K., & Doohan, F. M. (2005). Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Additives and Contaminants, 22, 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., et al. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2, 404–416.

    Article  PubMed  Google Scholar 

  • Saikkonen, K., Wali, P., Helander, M., & Faeth, S. H. (2004). Evolution of endophyte-plant symbioses. Trends in Plant Science, 9, 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H., Adler, A., Holst-Jensen, A., Klemsdal, S. S., Logrieco, A., Mach, R. L., et al. (2004). An integrated taxonomic study of Fusarium langsethiae, Fusarium poae and Fusarium sporotrichioides based on the use of composite datasets. International Journal of Food Microbiology, 95, 341–349.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, A., Christensen, M. J., Takemoto, D., Park, P., & Scott, B. (2006). Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. The Plant Cell, 18, 1052–1066.

    Article  PubMed  CAS  Google Scholar 

  • Tekauz, A., McCallum, B., Ames, N., & Fetch, J. M. (2004). Fusarium head blight of oat—current status in western Canada. Canadian Journal of Plant Pathology, 26, 473–479.

    Article  Google Scholar 

  • Thrane, U., Adler, A., Clasen, P. E., Galvano, F., Langseth, W., Logrieco, A., et al. (2004). Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. International Journal of Food Microbiology, 95, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Torp, M., & Adler, A. (2004). The European Sporotrichiella project: a polyphasic approach to the biology of a new Fusarium species. International Journal of Food Microbiology, 95, 241–245.

    Article  PubMed  Google Scholar 

  • Torp, M., & Langseth, W. (1999). Production of T-2 toxin by a Fusarium resembling Fusarium poae. Mycopathologia, 147, 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Torp, M., & Nirenberg, H. I. (2004). Fusarium langsethiae sp nov on cereals in Europe. International Journal of Food Microbiology, 95, 247–256.

    Article  PubMed  Google Scholar 

  • Waalwijk, C., van der Heide, R., de Vries, I., van der Lee, T., Schoen, C., Costrel-de Corainville, G., et al. (2004). Quantitative detection of Fusarium species in wheat using TaqMan. European Journal of Plant Pathology, 110, 481–494.

    Article  CAS  Google Scholar 

  • Warham, E. J., Mujeebkazi, A., & Rosas, V. (1986). Karnal bunt (Tilletia indica) resistance screening of aegilops species and their practical utilization for Triticum aestivum improvement. Canadian Journal of Plant Pathology, 8, 65–70.

    Article  Google Scholar 

  • Yan, W. K., Fregeau-Reid, J., Rioux, S., Pageau, D., Xue, A., Martin, R., et al. (2010). Response of oat genotypes to Fusarium head blight in Eastern Canada. Crop Science, 50, 134–142.

    Article  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Kimen seed testing laboratory for providing oat seeds, Ruth Dill-Macky and Oleif Elen for technical advice and valuable discussions, Torfinn Torp for statistical advice, and Erik Lysøe for critical reading. This study was funded by the Norwegian Research Council, Foundation for Research Levy on Agricultural Products, and Bioforsk (project no. 185007/I10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Sletner Klemsdal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divon, H.H., Razzaghian, J., Udnes-Aamot, H. et al. Fusarium langsethiae (Torp and Nirenberg), investigation of alternative infection routes in oats. Eur J Plant Pathol 132, 147–161 (2012). https://doi.org/10.1007/s10658-011-9858-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9858-3

Keywords

Navigation