Advertisement

European Journal of Plant Pathology

, Volume 132, Issue 1, pp 133–146 | Cite as

Response of Vitis vinifera cell cultures to Phaeomoniella chlamydospora: changes in phenolic production, oxidative state and expression of defence-related genes

  • Marta R. M. Lima
  • Federico Ferreres
  • Alberto C. P. Dias
Original Research

Abstract

Cell suspension cultures of Vitis vinifera cv. Vinhão (Vv) were used to study the putative response of V. vinifera to Phaeomoniella chlamydospora (Pc), a fungus frequently associated with esca and grapevine decline. Cells were elicited with a Pc autoclaved biomass extract and methyl jasmonate (MeJ). Phenolic production was evaluated by HPLC-DAD and HPLC-MS/MS. Phenolic production of Vv cells significantly changes after elicitation. Compared to control, Vv cells elicited by Pc extract increase their stilbene production 20-fold and those elicited by MeJ increase stilbenic production 9-fold. In both cases, there is de novo production of viniferin type compounds. We also analyzed the oxidative burst of Vv cells after elicitation with Pc extract and MeJ, using the probe 2′,7′-dichlorodihydrofluorescein diacetate. Adding Pc extract induces an oxidative burst that shows a biphasic pattern in Vv cells. Moreover, the induction of 7 defence-related genes expression in Vv cell cultures upon Pc extract elicitation was investigated employing semi-quantitative RT-PCR. Elicitation increases the expression of class 6 and class 10 pathogenesis-related proteins, β-1,3-glucanase, class III chitinase, lipoxygenase, phenylalanine ammonia lyase and stilbene synthase. Therefore, Vv in vitro cell cultures could be an important tool to study esca disease, since they offer a simple, rapid and selective way to evaluate plant/fungus interactions.

Keywords

Cell suspensions Defence-related genes Esca disease Oxidative burst Phenolic production Vitis vinifera 

Notes

Acknowledgements

Marta Lima was supported by Fundação para a Ciência e a Tecnologia (FCT) through the PhD grant SFRH/BD/17944/2004.

References

  1. Adrian, M., Jeandet, P., Douillet-Breuil, A.-C., Tesson, L., & Bessis, R. (2000). Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. Journal of Agricultural and Food Chemistry, 48, 6103–6105.PubMedCrossRefGoogle Scholar
  2. Agrelli, D., Amalfitano, C., Conte, P., & Mugnai, L. (2009). Chemical and spectroscopic characteristics of the wood of Vitis vinifera Cv. sangiovese affected by esca disease. Journal of Agricultural and Food Chemistry, 57, 11469–11475.PubMedCrossRefGoogle Scholar
  3. Amalfitano, C., Evidente, A., Surico, G., Tegli, S., Bertelli, E., & Mugnai, L. (2000). Phenols and stilbene polyphenols in the wood of esca-diseased grapevines. Phytopathologia Mediterranea, 39, 178–183.Google Scholar
  4. Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bézier, A., Lambert, B., et al. (2003). Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions, 16, 1118–1128.PubMedCrossRefGoogle Scholar
  5. Bavaresco, L., Petegolli, D., Cantu, E., Fregoni, M., Chiusa, G., & Trevisan, M. (1997). Elicitation and accumulation of stilbene phytoalexin in grapevine berries infected by Botrytis cinerea. Vitis, 36, 77–83.Google Scholar
  6. Belhadj, A., Saigne, C., Telef, N., Cluzet, S., Bouscaut, J., Corio-Costet, M.-F., et al. (2006). Methyl jasmonate induced defense responses in grapevine and triggers protection against Erysiphe necator. Journal of Agricultural and Food Chemistry, 54, 9119–9125.PubMedCrossRefGoogle Scholar
  7. Bézier, A., Lambert, B., & Baillieul, F. (2002). Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. European Journal of Plant Pathology, 108, 111–120.CrossRefGoogle Scholar
  8. Bonomelli, A., Mercier, L., Franchel, J., Baillieul, F., Benizri, E., & Mauro, M.-C. (2004). Response of grapevine defenses to UV-C exposure. American Journal of Enology and Viticulture, 55, 51–59.Google Scholar
  9. Borie, B., Jeandet, P., Parize, A., Bessis, R., & Adrian, M. (2004). Resveratrol and stilbene synthase mRNA production in grapevine leaves treated with biotic and abiotic phytoalexin elicitors. American Journal of Enology and Viticulture, 55, 60–64.Google Scholar
  10. Bruno, G., & Sparapano, L. (2006a). Effects of three-esca associated fungi on Vitis vinifera L.: I. Characterization of secondary metabolites in culture media and host responses to the pathogens in calli. Physiological and Molecular Plant Pathology, 69, 209–223.CrossRefGoogle Scholar
  11. Bruno, G., & Sparapano, L. (2006b). Effects of three esca-associated fungi on Vitis vinifera L.: II. Characterization of biomolecules in xylem sap and leaves of healthy and diseased vines. Physiological and Molecular Plant Pathology, 69, 195–208.CrossRefGoogle Scholar
  12. Bruno, G., Sparapano, L., & Graniti, A. (2007). Effects of three esca-associated fungi on Vitis vinifera L.: IV. Diffusion through the xylem of metabolites produced by two tracheiphilous fungi in the woody tissue of grapevine leads to esca-like symptoms on leaves and berries. Physiological and Molecular Plant Pathology, 71, 106–124.CrossRefGoogle Scholar
  13. Busam, G., Kassemeyer, H.-H., & Matern, U. (1997). Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiology, 115, 1029–1038.PubMedCrossRefGoogle Scholar
  14. Chiarappa, L. (2000). Esca (black measles) of grapevine. An overview. Phytopathologia Mediterranea, 39, 11–15.Google Scholar
  15. Chicau, G., Aboim-Inglez, M., Cabral, S., & Cabral, J. (2000). Phaeoacremonium chlamydosporum and Phaeoacremonium angustius associated with esca and grapevine decline in Vinho Verde grapevines in northwest Portugal. Phytopathologia Mediterranea, 39, 80–86.Google Scholar
  16. Creelman, R., & Mullet, J. (1997). Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development and gene expression. The Plant Cell, 9, 1211–1223.PubMedCrossRefGoogle Scholar
  17. Dai, G., Andary, C., Mondolot-Cosson, L., & Boubals, D. (1995). Histochemical studies on the interaction between three species of grapevine, Vitis vinifera, V. rupestris and V. rotundifolia and the downy mildew fungus, Plasmopara viticola. Phisiological and Molecular Plant Pathology, 46, 177–188.CrossRefGoogle Scholar
  18. Del Rio, J., Gonzalez, A., Fuster, M., Botia, J., Gomez, P., Frias, V., et al. (2001). Tylose formation and changes in phenolic compounds of grape roots infected with Phaeomoniella chlamydospora and Phaeoacremonium species. Phytopathologia Mediterranea, 40, S394–S399.Google Scholar
  19. Di Marco, S., Mazzullo, A., Calzarano, F., & Cesari, A. (2000). The controlo f esca: status and perspectives. Phytopathologia Mediterranea, 39, 232–240.Google Scholar
  20. Douillet-Breuil, A.-C., Jeandet, P., Adrian, M., & Bessis, R. (1999). Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C elicitation. Journal of Agricultural and Food Chemistry, 47, 4456–4461.PubMedCrossRefGoogle Scholar
  21. Feliciano, A., Eskalen, A., & Gubler, W. (2004). Differential susceptibility of three grapevine cultivars to Phaeoacremonium aleophilum and Phaeomoniella chlamydospora in California. Phytopathologia Mediterranea, 43, 66–69.Google Scholar
  22. Fung, R., Gonzalo, M., Fekete, C., Kovacs, L., He, Y., Marsh, E., et al. (2008). Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiology, 146, 236–249.PubMedCrossRefGoogle Scholar
  23. Fussler, L., Kobes, N., Bertrand, F., Maumy, M., Grosman, J., & Savary, S. (2008). A characterization of grapevine trunk diseases in France from data generated by the national grapevine wood diseases survey. Phytopathology, 98, 571–579.PubMedCrossRefGoogle Scholar
  24. Goetz, G., Fkyerat, A., Métais, N., Kunz, M., Tabacchi, R., Pezet, R., et al. (1999). Resistance factors to grey mould in grape berries: identification of some phenolics inhibitors of Botrytis cinerea stilbene oxidase. Phytochemistry, 52, 759–767.CrossRefGoogle Scholar
  25. Graniti, A., Surico, G., & Mugnai, L. (2000). Esca of grapevine: a disease complex or a complex of diseases? Phytopathologia Mediterranea, 39, 16–20.Google Scholar
  26. Gubler, W., Thind, T., Feliciano, A., & Eskalen, A. (2004). Pathogenicity of Phaeoacremonium aleophilum and Phaeomoniella chlamydospora on grape berries in California. Phytopathologia Mediterranea, 43, 70–74.Google Scholar
  27. Gundlach, H., Müller, M., Kutchan, T., & Zenk, M. (1992). Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceedings of the National Academy of Sciences USA, 89, 2389–2393.CrossRefGoogle Scholar
  28. Jacobs, A., Dry, I., & Robinson, S. (1999). Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Plant Pathology, 48, 325–336.CrossRefGoogle Scholar
  29. Jeandet, P., Bessis, R., Sbagghi, M., & Meunier, P. (1995). Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. Journal of Phytopathology, 143, 135–139.CrossRefGoogle Scholar
  30. Jeandet, P., Douillet-Breuil, A.-C., Bessis, R., Debord, S., Sbaghi, M., & Adrian, M. (2002). Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity and metabolism. Journal of Agricultural and Food Chemistry, 50, 2731–2741.PubMedCrossRefGoogle Scholar
  31. Kortekamp, A. (2006). Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiology and Biochemistry, 44, 58–67.PubMedCrossRefGoogle Scholar
  32. Krisa, S., Larronde, F., Budzinsky, H., Decendit, A., Deffieux, G., & Mérillon, J.-M. (1999). Stilbene production by Vitis vinifera cell suspension cultures: methyl jasmonate induction and 13 C biolabeling. Journal of Natural Products, 62, 1688–1690.CrossRefGoogle Scholar
  33. Lamb, C., & Dixon, R. (1997). The oxidative burst in plant disease resistance. Annual Reviews of Plant Physiology and Plant Molecular Biology, 48, 251–275.CrossRefGoogle Scholar
  34. Langcake, P. (1981). Disease resistance of Vitis spp. and the production of stress metabolites resveratrol, ε-viniferin, α-viniferin and pterostilbene. Physiological Plant Pathology, 18, 213–226.Google Scholar
  35. Langcake, P., & Pryce, R. (1977). The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry, 16, 1193–1196.CrossRefGoogle Scholar
  36. Larignon, P., & Dubos, B. (1997). Fungi associated with esca disease in grapevine. European Journal of Plant Pathology, 103, 147–157.CrossRefGoogle Scholar
  37. Letousey, P., Baillieul, F., Perrot, G., Rabenoelina, F., Boulay, M., Vaillant-Gaveau, N., et al. (2010). Early events prior to visual symptoms in the apoplectic form of grapevine esca disease. Phytopathology, 100, 424–431.PubMedCrossRefGoogle Scholar
  38. Lima, M., Felgueiras, M., Graça, G., Rodrigues, J., Barros, A., Gil, A., et al. (2010). NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. Journal of Experimental Botany, 61, 4033–4042.CrossRefGoogle Scholar
  39. Marchi, G., Peduto, F., Mugnai, L., Di Marco, S., Calzarano, F., & Surico, G. (2006). Some observations on the relationship of manifest and hidden esca to rainfall. Phytopathologia Mediterranea, 45, S117–S126.Google Scholar
  40. Martin, N., Vesentini, D., Rego, C., Monteiro, S., Oliveira, H., & Ferreira, R. (2009). Phaeomoniella chlamydospora infection induces changes in phenolic compounds content in Vitis vinifera. Phytopathologia Mediterranea, 48, 101–116.Google Scholar
  41. Melchior, F., & Kindl, H. (1991). Coordinate- and elicitor-dependent expression of stilbene synthase and phenylalanine ammonia-lyase genes in Vitis cv. Optima. Archives of Biochemistry and Biophysics, 288, 552–557.PubMedCrossRefGoogle Scholar
  42. Mugnai, L., Surico, G., & Esposito, A. (1996). Microflora associata al mal dellésca della vite in Toscana. Informatore Fitopatologico, 11, 49–55.Google Scholar
  43. Mugnai, L., Graniti, A., & Surico, G. (1999). Esca (black measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Disease, 83, 404–418.CrossRefGoogle Scholar
  44. Parsons, H., Yip, J., & Vanlerberghe, G. (1999). Increased respiratory restriction during phosphate-limited growth in transgenic tobacco cells lacking alternative oxidase. Plant Physiology, 121, 1309–1320.PubMedCrossRefGoogle Scholar
  45. Repka, V. (2006). Early defence responses induced by two distinct elicitors derived from a Botrytis cinerea in grapevine leaves and cell suspensions. Biologia Plantarum, 50, 94–106.CrossRefGoogle Scholar
  46. Repka, V., Fischerová, I., & Silhárová, K. (2001). Methyl jasmonate induces a hypersensitive-like response of grapevine in the absence of avirulent pathogens. Vitis, 40, 5–10.Google Scholar
  47. Robert, N., Ferran, J., Breda, C., Coutos-Thévenot, P., Boulay, M., Buffard, D., et al. (2001). Molecular characterization of the incompatible interaction of Vitis vinifera leaves with Pseudomonas syringae pv. pisi: expression of genes coding for stilbene synthase and class 10 PR protein. European Journal of Plant Pathology, 107, 249–261.CrossRefGoogle Scholar
  48. Robert, N., Roche, K., Lebeau, Y., Breda, C., Boulay, M., Esnault, R., et al. (2002). Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogen. Plant Science, 162, 389–400.CrossRefGoogle Scholar
  49. Santos, C., Fragoeiro, S., & Phillips, A. (2005). Physiological response of grapevine cultivars and a rootstock to infection with Phaeoacremonium and Phaeomoniella isolates: an in vitro approach using plants and calluses. Scientia Horticulturae, 103, 187–198.CrossRefGoogle Scholar
  50. Sarig, P., Zutkhi, Y., Monjauze, A., Lisker, N., & Ben-Arie, R. (1997). Phytoalexin elicitation in grape berries and their susceptibility to Rhizopus stolonifer. Physiological and Molecular Plant Pathology, 50, 337–347.CrossRefGoogle Scholar
  51. Silva, B., Ferreres, F., Malva, J., & Dias, A. (2005). Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chemistry, 90, 157–167.CrossRefGoogle Scholar
  52. Smalley, E., & Guries, R. (1993). Breeding elms for resistance to Dutch elm diseases. Annual Review of Phytopathology, 31, 325–352.CrossRefGoogle Scholar
  53. Sparapano, L., Bruno, G., & Graniti, A. (2001a). Three-year observation of grapevines cross-inoculated with esca-associated fungi. Phytopathologia Mediterranea, 40, S376–S386.Google Scholar
  54. Sparapano, L., De Leonardis, S., Campanella, A., & Bruno, G. (2001b). Interaction between esca-associated fungi, grapevine calli and micropropagated shoot cultures of grapevine. Phytopathologia Mediterranea, 40, S423–S428.Google Scholar
  55. Surico, G., Mugnai, L., & Marchi, G. (2006). Older and more recent observations on esca: a critical overview. Phytopathologia Mediterranea, 45, S68–S86.Google Scholar
  56. Tabacchi, R., Fkyerat, A., Poliart, C., & Dubin, G.-M. (2000). Phytotoxins from fungi of esca of grapevine. Phytopathologia Mediterranea, 39, 156–161.Google Scholar
  57. Wang, H., & Joseph, J. (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology & Medicine, 27, 612–616.CrossRefGoogle Scholar
  58. Wiese, W., Vornam, B., Krause, E., & Kindl, H. (1994). Structural organization and differential expression of three stilbene synthase genes located on a 13 Kb grapevine DNA fragment. Plant Molecular Biology, 26, 667–677.PubMedCrossRefGoogle Scholar
  59. Wojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. Biochemical Journal, 322, 681–692.PubMedGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  • Marta R. M. Lima
    • 1
  • Federico Ferreres
    • 2
  • Alberto C. P. Dias
    • 1
  1. 1.Department of Biology, CITAB-Centro de Investigação e de Tecnologias Agro-Ambientais e BiológicasUniversity of MinhoBragaPortugal
  2. 2.Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS (CSIC), Campus Universitario Espinardo Edif.MurciaSpain

Personalised recommendations