Skip to main content
Log in

TaFLRS, a novel mitogen-activated protein kinase in wheat defence responses

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plants respond to biotic and abiotic stresses through the activation and coordination of various signalling pathways. The activation often requires the phosphorylation of proteins. In this study, we have identified the wheat TaFLRS MAP kinase (Fusarium and Leaf Rust Sensitive) gene that was upregulated in a wheat EST (expressed sequence tag) array analysis following a wheat-leaf rust interactive challenge. Our results demonstrate that TaFLRS is transcriptionally upregulated in incompatible interactions involving wheat and leaf rust and Fusarium graminearum, suggesting that this MAPK maybe involved in defence responses to these wheat pathogens. RT-PCR revealed that TaFLRS transcript levels are not altered by salicylic acid (SA) treatment. However, immunoprecipitation and western blotting analysis show that phosphorylation of TaFLRS at the TEY motif was enhanced by SA in the Fusarium head blight (FHB) resistant cultivar Frontana following challenge with the FHB pathogen. The role of TaFLRS MAP kinase in defence responses in wheat is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FHB:

Fusarium head blight

HR:

hypersensitive response

MAPK:

mitogen-activated protein kinase

PR gene:

pathogenesis-related gene

SA:

salicylic acid.

References

  • Altschu, S. F., Madden, T. L., Schofer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  Google Scholar 

  • Beckers, G. J., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., et al. (2009). Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell, 21, 944–953.

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert, P. A., Somers, D. J., Thomas, J., Cloutier, S., & Brulé-Babel, A. (2006). Fine mapping Fhb1, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 112, 81465–81472.

    Article  Google Scholar 

  • Cvetkovska, M., Rampitsch, C., Bykova, N., & Xing, T. (2005). Genomic analysis of MAP kinase cascades in Arabidopsis defense responses. Plant Molecular Biology Reporter, 23, 331–343.

    Article  CAS  Google Scholar 

  • Dangl, J. L., & Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826–833.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T., Gao, Y., Al-Shammari, A., Wang, X. J., & Xing, T. (2009). Yeast two-hybrid screening of MAP kinase cascade identifies cytosolic glutamine synthetase 1b as a tMEK2 interactive protein in wheat. Canadian Journal of Plant Pathology, 31, 407–414.

    Article  CAS  Google Scholar 

  • Fofana, B., Banks, T. W., McCallum, B., Strelkov, S. E., & Cloutier, S. (2007). Temporal gene expression profiling of the wheat leaf rust pathosystem using cDNA microarray reveals differences in compatible and incompatible defence pathways. International Journal of Plant Genomics. doi:10.1155/2007/17542.13pages.

  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., et al. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436–442.

    Article  PubMed  Google Scholar 

  • Gilbert, J., Jordan, M., Somers, D., Xing, T., & Punja, Z. (2006). Engineering plants for durable disease resistance. In S. Tuzun & E. Bent (Eds.), Multigenic and Induced Systemic Resistance in Plants (pp. 415–455). New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Grant, M., & Lamb, C. (2006). Systemic immunity. Current Opinion in Plant Biology, 9, 414–420.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K. E., & Jones, J. D. G. (1996). Resistance gene dependent plant defense responses. Plant Cell, 8, 1773–1791.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T., & Shinozaki, K. (2000). Various abiotic stresses rapidly activated Arabidopsis MAP kinases AtMPK4 and AtMPK6. Plant Journal, 24, 655–665.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, C., von Wettstein, D., Schäfer, W., Kogel, K.-H., Felk, A., & Maier, F. J. (2005). Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Acadamy of Sciences USA, 102, 16892–16897.

    Article  CAS  Google Scholar 

  • Jordan, M., Cloutier, S., Somers, D., Procunier, D., Rampitsch, C., & Xing, T. (2006). Beyond R genes: dissecting disease-resistance pathways using genomics and proteomics. Canadian Journal of Plant Pathology, 28, S228–S232.

    Article  CAS  Google Scholar 

  • Kolmer, J. A. (1996). Genetics of resistance to wheat leaf rust. Annual Review of Phytopathology, 34, 435–455.

    Article  PubMed  CAS  Google Scholar 

  • Ligterink, W., Kroj, T., zur Nieden, U., Hirt, H., & Scheel, D. (1997). Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science, 276, 2054–2057.

    Article  PubMed  CAS  Google Scholar 

  • Marcel, T. C., Aghnoum, R., Durand, J., Varshney, R. K., & Niks, R. E. (2007). Dissection of the barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Molecular Plant-Microbe Interaction, 20, 1604–1615.

    Article  CAS  Google Scholar 

  • Menke, F. L. H., van Pelt, J. A., Pieterse, C. M. J., & Klessig, D. F. (2004). Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell, 16, 897–907.

    Article  PubMed  CAS  Google Scholar 

  • Nakagami, H., Pitzschke, A., & Hirt, H. (2005). Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science, 10, 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Panstruga, R. (2003). Establishing compatibility between plants and obligate biotrophic pathogens. Currunt Opininion in Plant Biology, 6, 320–326.

    Article  CAS  Google Scholar 

  • Peck, S. C. (2003). Early phosphorylation events in biotic stress. Current Opinion in Plant Biology, 6, 334–338.

    Article  PubMed  CAS  Google Scholar 

  • Rudd, J. J., Keon, J., & Hammond-Kosack, K. E. (2008). The wheat mitogen-activated protein kinases TaMPK3 and TaMPK6 are differentially regulated at multiple levels during compatible disease interactions with Mycosphaerella graminicola. Plant Physiology, 147, 802–815.

    Article  PubMed  CAS  Google Scholar 

  • Schramek, H. (2002). MAP Kinases: from intracellular signals to physiology and disease. News in Physiological Sciences, 17, 62–67.

    PubMed  CAS  Google Scholar 

  • Stulemeijer, I. J. E., Stratmann, J. W., & Joosten, M. (2007). Tomato mitogen activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the Cf-4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiology, 144, 1481–1494.

    Article  PubMed  CAS  Google Scholar 

  • Walter, S., Nicholson, P., & Doohan, F. M. (2010). Action and reaction of host and pathogen during Fusarium head blight disease. New Phytologist, 185, 54–66.

    Article  PubMed  CAS  Google Scholar 

  • Xing, T., Malik, K., Martin, T., & Miki, B. L. (2001). Activation of tomato PR and wound-related genes by a mutagenized tomato MAP kinase kinase through divergent pathways. Plant Molecular Biology, 46, 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Xing, T., Ouellet, T., & Miki, B. L. (2002). Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. Trends in Plant Science, 7, 224–230.

    Article  PubMed  CAS  Google Scholar 

  • Xing, T., Rampitsch, C., Miki, B. L., Mauthe, W., Stebbing, J., Malik, K., et al. (2003). MALDI-Qq-TOF-MS and transient gene expression analysis indicated co-enhancement of ß-1,3-glucanase and endochitinase by tMEK2 and the involvement of divergent pathways. Physiological and Molecular Plant Pathology, 62, 209–217.

    Article  CAS  Google Scholar 

  • Xing, T., Rampitsch, C., Sun, S., Romanowski, A., Conroy, C., Stebbing, J., et al. (2008). TAB2, a nucleoside diphosphate protein kinase, is a component of the tMEK2 disease resistance pathway in tomato. Physiological and Molecular Plant Pathology, 73, 33–39.

    Article  CAS  Google Scholar 

  • Zhang, S., & Klessig, D. F. (1997). Salicylic acid activates a 48-KDa MAP kinase in tobacco. Plant Cell, 9, 809–824.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Agricultural Bioproducts Innovation Program (ABIP) to D.G., A.L., and T.X., NSERC Discovery Grant to T.X. We thank Dr. Jeannie Gilbert, Dr. Brent McCallum, and Dr. Thérèse Ouellet in Agriculture and Agri-Food Canada for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Liu, X., Stebbing, JA. et al. TaFLRS, a novel mitogen-activated protein kinase in wheat defence responses. Eur J Plant Pathol 131, 643–651 (2011). https://doi.org/10.1007/s10658-011-9837-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9837-8

Keywords

Navigation