Protective role of silicon in the banana-Cylindrocladium spathiphylli pathosystem

Abstract

Silicon (Si) is known to reduce the incidence of pathogens on many plants. Little information is available on the potential positive effects of Si on the susceptibility of banana (Musa acuminata) to pathogens. Root-rot fungi of the genus Cylindrocladium have been reported, along with endoparasitic nematodes, to be the causal agent of toppling disease and severe yield loss. The objective of this study was to determine the effects of Si supply on Cylindrocladium spathiphylli infection on banana. Plantlets inoculated by dipping the root system in a conidial suspension of the pathogen were grown on a desilicated ferralsol and amended, or not, with 2 mM of soluble Si under greenhouse conditions in Guadeloupe. The root lesion severity was evaluated using the image analysis program WinRHIZO 7, 14 and 21 days after inoculation. A reduction of about 50% of root necrosis was observed 14 days after inoculation for the Si-supplied plants compared with those not supplied with Si. The Si amendment also alleviated growth reduction caused by the pathogen. These results suggest that Si could have a positive effect on banana resistance to C. spathiphylli and provide an environmentally friendly alternative to pesticides for the integrated control of an important crop disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arias, P., Dankers, C., Liu, P., & Pilkauskas, P. (2003). L’économie mondiale de la banane 1985–2002 (p. 102). Rome: FAO Press.

    Google Scholar 

  2. Bélanger, R. R., Benhamou, N., & Menzies, J. G. (2003). Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f.sp. tritici). Phytopathology, 93, 402–412.

    PubMed  Article  Google Scholar 

  3. Cai, K., Gao, D., Shiming, L., Resen, Z., Yang, J., & Zhu, X. (2008). Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiologia Plantarum, 134, 324–333.

    PubMed  Article  CAS  Google Scholar 

  4. Chain, F., Côté-Beaulieu, C., Belzile, F., Menzies, J. G., & Bélanger, R. R. (2009). A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions. Molecular Plant-Microbe Interactions, 22, 1323–1330.

    PubMed  Article  CAS  Google Scholar 

  5. Chao, T. T., & Sanzolone, R. F. (1992). Decomposition techniques. Journal of Geochemical Exploration, 44, 65–106.

    Article  CAS  Google Scholar 

  6. Chérif, M., Menzies, J. G., Benhamou, N., & Bélanger, R. R. (1992). Studies of silicon distribution in wounded and Pythium ultimum infected cucumber plants. Physiological and Molecular Plant Pathology, 4, 371–385.

    Article  Google Scholar 

  7. Chérif, M., Asselin, A., & Bélanger, R. R. (1994). Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology, 84, 236–242.

    Article  Google Scholar 

  8. Cornelis, J.-T., Delvaux, B., & Titeux, H. (2010). The contrasting silicon uptakes by coniferous trees: a hydroponic experiment. Plant and Soil, 336, 99–106.

    Article  CAS  Google Scholar 

  9. Datnoff, L. E., Rodrigues, F. A., & Seebold, K. W. (2007). Silicon and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 233–246). St. Paul: The American Phytopathological Society.

    Google Scholar 

  10. Diogo, R. V. C., & Wydra, K. (2007). Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiological and Molecular Plant Pathology, 70, 120–129.

    Article  CAS  Google Scholar 

  11. Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 91, 11–17.

    PubMed  Article  CAS  Google Scholar 

  12. Epstein, E. (2009). Silicon: its manifold roles in plants. Annals of Applied Biology, 155, 155–160.

    Article  CAS  Google Scholar 

  13. Fauteux, F., Rémus-Borel, W., Menzies, J. G., & Bélanger, R. R. (2005). Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters, 249, 1–6.

    PubMed  Article  CAS  Google Scholar 

  14. Fawe, A., Abou-Zaid, M., Menzies, J. G., & Bélanger, R. R. (1998). Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology, 88, 396–401.

    PubMed  Article  CAS  Google Scholar 

  15. Fawe, A., Menzies, J. G., Chérif, M., & Bélanger, R. R. (2001). Silicon and disease resistance in dicotyledons. In L. E. Datnoff, G. H. Snyder, & G. H. Korndörfer (Eds.), Silicon in agriculture (pp. 159–169). The Netherlands: Elsevier Science.

    Google Scholar 

  16. Henriet, C., Draye, X., Oppitz, I., Swennen, R., & Delvaux, B. (2006). Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant and Soil, 287, 359–374.

    Article  CAS  Google Scholar 

  17. Henriet, C., De Jaeger, N., Dorel, M., Opfergelt, S., & Delvaux, B. (2008). The reserve of weatherable primary silicates impacts the accumulation of biogenic silicon in volcanic ash soils. Biogeochemistry, 90, 209–223.

    Article  CAS  Google Scholar 

  18. Kablan, L., Delvaux, B., & Legrève, A. (2008, October). Impact of silicon on the susceptibility of banana plants (Musa acuminata) to black Sigatoka disease. Paper presented at the 4th International conference of Silicon in Agriculture, Port Edward, South Africa.

  19. Keeping, M. G., & Reynolds, O. L. (2009). Silicon in agriculture: new insights, new significance and growing application. Annals of Applied Biology, 155, 153–154.

    Article  CAS  Google Scholar 

  20. Lahav, E. (1995). Banana nutrition. In S. Gowen (Ed.), Bananas and plantains (pp. 258–316). London: Chapman and Hall.

    Google Scholar 

  21. Lassoudière, A. (2007). Le bananier et sa culture (p. 383). Quae: France.

    Google Scholar 

  22. Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11, 392–397.

    PubMed  Article  CAS  Google Scholar 

  23. Ma, J. F., Miyake, Y., & Takahashi, E. (2001). Silicon as a beneficial element for crop plants. In L. E. Datnoff, G. H. Snyder, & G. H. Korndörfer (Eds.), Silicon in agriculture (pp. 17–39). The Netherlands: Elsevier Science.

    Google Scholar 

  24. Martinati, J. C., Harakava, R., Guzzo, S. D., & Tsai, S. M. (2008). The potential use of a silicon source as a component of an ecological management of coffee plants. Journal of Phytopathology, 156, 458–463.

    Article  Google Scholar 

  25. Menzies, J. G., Ehret, D. L., Glass, A. D. M., & Samuels, A. L. (1991). The influence of silicon on cytological interactions between Sphaerotheca fuliginea on Cucumis sativus. Physiological and Molecular Plant Pathology, 39, 403–414.

    Article  CAS  Google Scholar 

  26. Raven, J. A. (2001). Silicon transport at the cell and tissue level. In L. E. Datnoff, G. H. Snyder, & G. H. Korndörfer (Eds.), Silicon in agriculture (pp. 41–56). The Netherlands: Elsevier Science.

    Google Scholar 

  27. Reynolds, O. L., Keeping, M. G., & Meyer, J. H. (2009). Silicon-augmented resistance of plants to herbivorous insects: a review. Annals of Applied Biology, 155, 171–186.

    Article  CAS  Google Scholar 

  28. Risède, J. M. (2008). Isolation of Cylindrocladium spp. in root and soils from banana cropping systems. Fruits, 63, 57–61.

    Article  Google Scholar 

  29. Risède, J. M., & Rhino, B. (2008). Long-term maintenance of Cylindrocladium strains and procedures for inoculum production. Fruits, 63, 193–197.

    Article  Google Scholar 

  30. Risède, J. M., & Simoneau, P. (2004). Pathogenic and genetic diversity of soilborne isolates of Cylindrocladium from banana cropping systems. European Journal of Plant Pathology, 110, 139–154.

    Article  Google Scholar 

  31. Rodrigues, F. A., Vale, F. X. R., Korndörfer, G. H., Prabhu, A. S., Datnoff, L. E., Oliveira, A. M. A., et al. (2003). Influence of silicon on sheath blight of rice in Brazil. Crop Protection, 22, 23–29.

    Article  CAS  Google Scholar 

  32. Seebold, K. W., Datnoff, L. E., Correa-Victoria, F. J., Kucharek, T. A., & Snyder, G. H. (2000). Effect of silicon rate and host resistance on blast, scald and yield of upland rice. Plant Disease, 84, 871–876.

    Article  Google Scholar 

  33. Sommer, M., Kaczorek, D., Kuzyakov, Y., & Breuer, J. (2006). Silicon pools and fluxes in soils and landscapes—a review. Journal of Plant Nutrition and Soil Science, 169, 310–329.

    Article  CAS  Google Scholar 

  34. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry-chemical equilibria and rates in natural waters. New York: Wiley.

    Google Scholar 

  35. Swain, B. N., & Prasad, J. S. (1988). Influence of silica content in the roots of rice varieties on the resistance to root rot nematode. Indian Journal of Nematology, 18, 360–361.

    Google Scholar 

  36. Swennen, R., & Vuylsteke, D. (2001). Bananier. In R. H. Raemaekers (Ed.), Agriculture en Afrique Tropicale (pp. 611–637). Bruxelles: DGCI.

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Iserentant for ICP-AES analysis and Dr J-T Cornelis and Dr F Crutzen for critical reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anne Legrève.

Additional information

Marie-Liesse Vermeire and Lucie Kablan contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vermeire, ML., Kablan, L., Dorel, M. et al. Protective role of silicon in the banana-Cylindrocladium spathiphylli pathosystem. Eur J Plant Pathol 131, 621 (2011). https://doi.org/10.1007/s10658-011-9835-x

Download citation

Keywords

  • Musa acuminata
  • Root-rot fungus
  • Silicon
  • WinRHIZO
  • Integrated pest management