Skip to main content
Log in

Hydrogen peroxide scavenging mechanisms are components of Medicago truncatula partial resistance to Aphanomyces euteiches

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The biochemical processes underlying the expression of resistance in the roots of Medicago truncatula against Aphanomyces euteiches infection was investigated, with emphasis on oxidative stress. The levels of H2O2, superoxide dismutase, peroxidase, ascorbate peroxidase, catalase, soluble phenolics and lignin were measured in the roots of two lines, A17 partially resistant and F83005.5 susceptible to A. euteiches at three infection stages; penetration of the epidermis (1 dpi), colonization of the cortex (3 dpi) and invasion of the root stele (6 dpi). A rapid and large decrease of the H2O2 levels in A17 roots occurred. However, in F83005.5 roots, the decrease in H2O2 levels was delayed until 3 dpi. In A17 roots, the activities of ascorbate peroxidase, peroxidase and catalase were induced as early as 1 dpi, whereas a general decrease in the activity of the four antioxidant enzymes was observed in F83005.5 roots. The levels of soluble phenolics and lignin were increased in A17 roots at 3 and 6 dpi, respectively. The H2O2 levels were negatively correlated to ascorbate peroxidase, catalase and lignin production at 1, 3 and 6 dpi, respectively in A17 roots. Physiological concentrations of H2O2 found in M. truncatula infected roots had no detrimental effect on the in vitro growth of this oomycete. Our data suggest that H2O2 does not have a direct antimicrobial effect on M. truncatula resistance to A. euteiches, but is involved in cell wall strengthening around the root stele, preventing pathogen invasion of the vascular tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

dpi:

Day post inoculation

H2O2 :

Hydrogen peroxide

POX:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Aubert, G., Morin, J., Jacquin, F., Loridon, K., Quillet, M. C., Petit, A., et al. (2006). Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theoretical and Applied Genetics, 112, 1024–1041.

    Article  PubMed  CAS  Google Scholar 

  • Badreddine, I., Lafitte, C., Heux, L., Skandalis, N., Spanou, Z., Martinez, Y., et al. (2008). Cell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic Oomycete Aphanomyces euteiches. Eukaryotic Cell, 7, 1980–1993.

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase, improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Bécard, G., & Fortin, J. A. (1988). Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. The New Phytologist, 108, 211–218.

    Article  Google Scholar 

  • Bhuiyan, N. H., Selvaraj, G., Wei, Y., & King, J. (2009). Role of lignification in plant defense. Plant Signaling & Behavior, 4, 158–159.

    Article  CAS  Google Scholar 

  • Bolwell, G. P., & Daudi, A. (2009). Reactive oxygen species in plant–pathogen interactions. In L. A. del Río & A. Puppo (Eds.), Reactive oxygen species in plant signaling, (signaling and communication in plants) (pp. 113–133). Berlin: Springer.

    Chapter  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins utilising the principal of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Colditz, F., Braun, H. P., Jacquet, C., Niehaus, K., & Krajinski, F. (2005). Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula. Plant Molecular Biology, 59, 387–406.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, J. L., & Hagedorn, D. J. (1962). Penetration of pea roots by zoospores of Aphanomyces euteiches. Phytopathology, 52, 827–834.

    Google Scholar 

  • De Gara, L., De Pinto, M. C., & Tommasi, F. (2003). The antioxidant system vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiology and Biochemistry, 41, 863–870.

    Article  Google Scholar 

  • Djébali, N., Jauneau, A., Ameline-Torregrosa, C., Chardon, F., Jaulneau, V., Mathé, C., et al. (2009). Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Molecular Plant-Microbe Interactions, 22, 1043–1055.

    Article  PubMed  Google Scholar 

  • García-Limones, C., Hervás, A., Navas-Cortés, J. A., Jiménez-Díaz, R. M., & Tena, M. (2002). Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiological and Molecular Plant Pathology, 61, 325–337.

    Article  Google Scholar 

  • García-Pineda, E., Benezer-Benezer, M., Gutiérrez-Segundo, A., Rangel-Sánchez, G., Arreola-Cortés, A., & Castro-Mercado, E. (2010). Regulation of defence responses in avocado roots infected with Phytophthora cinnamomi (Rands). Plant and Soil, 331, 45–56.

    Article  Google Scholar 

  • Govrin, E. M., & Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10, 751–757.

    Article  PubMed  CAS  Google Scholar 

  • Grau, C. R., Muehlchen, A. M., & Tofte, J. E. (1991). Variability in virulence of Aphanomyces euteiches. Plant Disease, 75, 1153–1156.

    Article  Google Scholar 

  • Holub, E. B., Grau, C. R., & Parke, J. L. (1991). Evaluation of the forma specialis concept in Aphanomyces euteiches. Mycological Research, 95, 147–157.

    Article  Google Scholar 

  • Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic Oomycetes. Annual Review of Phytopathology, 44, 41–60.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.

    Article  PubMed  CAS  Google Scholar 

  • Latijnhouwers, M., de Wit, P. J. G. M., & Govers, F. (2003). Oomycetes and fungi: Similar weaponry to attack plants. Trends in Microbiology, 11, 462–469.

    Article  PubMed  CAS  Google Scholar 

  • Lebeda, A., Sedlářová, M., Petřivalský, M., & Prokopová, J. (2008). Diversity of defence mechanisms in plant–Oomycete interactions: A case study of Lactuca spp. and Bremia lactucae. European Journal of Plant Pathology, 122, 71–89.

    Article  Google Scholar 

  • Lin, C. C., & Kao, C. H. (1999). NaCl induced changes in ionically bounds peroxidase activity in roots of rice seedlings. Plant and Soil, 216, 147–153.

    Article  CAS  Google Scholar 

  • Lozano-Baena, M. D., Prats, E., Moreno, M. T., Rubiales, D., & Perezde-Luque, A. (2007). Medicago truncatula as a model for non-host resistance in legume-parasitic plant interactions. Plant Physiology, 145, 437–449.

    Article  PubMed  CAS  Google Scholar 

  • Madoui, M. A., Gaulin, E., Mathé, C., Clemente, H. S., Couloux, A., Wincker, P., et al. (2007). AphanoDB: A genomic resource for Aphanomyces pathogens. BMC Genomics, 8, 471.

    Article  PubMed  Google Scholar 

  • Morrison, I. M., & Stewart, D. (1995). Determination of lignin in the presence of ester-bound substituted cinnamic acids by a modified acetyl bromide procedure. Journal of the Science of Food and Agriculture, 69, 151–157.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1980). Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant & Cell Physiology, 21, 1295–1307.

    CAS  Google Scholar 

  • Peng, M., & Kuc, J. (1992). Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology, 82, 696–699.

    Article  CAS  Google Scholar 

  • Pilet-Nayel, M. L., Muehlbauer, F. J., McGee, R. J., Kraft, J. M., Baranger, A., & Coyne, C. J. (2002). Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theoretical and Applied Genetics, 106, 28–39.

    PubMed  CAS  Google Scholar 

  • Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., et al. (2004). Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochemistry Reviews, 3, 29–60.

    Article  CAS  Google Scholar 

  • Schouten, A., Tenberge, K. B., Vermeer, J., Stewart, J., Wagemakers, L., van Williamson, B., et al. (2002). Functional analysis of an extracellular catalase of Botrytis cinerea. Molecular Plant Pathology, 3, 227–238.

    Article  PubMed  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Takahama, U. (2004). Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: Physiological significance of the oxidation reactions. Phytochemistry Reviews, 3, 207–219.

    Article  CAS  Google Scholar 

  • Trapphoff, T., Beutner, C., Niehaus, K., & Colditz, F. (2009). Induction of distinct defense-associated protein patterns in Aphanomyces euteiches (Oomycota)–elicited and –inoculated Medicago truncatula cell-suspension cultures: A proteome and phosphoproteome approach. Molecular Plant-Microbe Interactions, 22, 421–436.

    Article  PubMed  CAS  Google Scholar 

  • Warm, E., & Laties, G. G. (1982). Quantification of hydrogen peroxide in plant extracts by the chemiluminescence reaction with luminol. Phytochemistry, 21, 827–831.

    Article  CAS  Google Scholar 

  • Yu, Q., & Rengel, Z. (1999). Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupines. Annals of Botany, 83, 175–182.

    Article  CAS  Google Scholar 

  • Yuan, J., & Shiller, A. M. (1999). Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Analytical Chemistry, 71, 1975–1980.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by Grain Legume Integrated Project (GLIP-FP6) and a Tunisian-French collaborating program (CMCU: 07 G/0907). We thank Pr. Sharon Y. Strauss (University of California Davis, USA) for reviewing the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naceur Djébali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djébali, N., Mhadhbi, H., Lafitte, C. et al. Hydrogen peroxide scavenging mechanisms are components of Medicago truncatula partial resistance to Aphanomyces euteiches . Eur J Plant Pathol 131, 559–571 (2011). https://doi.org/10.1007/s10658-011-9831-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9831-1

Keywords

Navigation